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A k-stack layout(respectively,k-queue layout) of a graph consists of a total order of the vertices, and a partition
of the edges intok sets of non-crossing (non-nested) edges with respect to the vertex ordering. Ak-track layoutof
a graph consists of a vertexk-colouring, and a total order of each vertex colour class, such that between each pair
of colour classes no two edges cross. Thestack-number(respectively,queue-number, track-number) of a graphG,
denoted bysn(G) (qn(G), tn(G)), is the minimumk such thatG has ak-stack (k-queue,k-track) layout.

This paper studies stack, queue, and track layouts of graph subdivisions. It is known that every graph has a3-stack
subdivision. The best known upper bound on the number of division vertices per edge in a3-stack subdivision of an
n-vertex graphG is improved fromO(log n) to O(log min{sn(G), qn(G)}). This result reduces the question of
whether queue-number is bounded by stack-number to whether3-stack graphs have bounded queue number.

It is proved that every graph has a2-queue subdivision, a4-track subdivision, and a mixed1-stack1-queue subdivi-
sion. All these values are optimal for every non-planar graph. In addition, we characterise those graphs withk-stack,
k-queue, andk-track subdivisions, for all values ofk. The number of division vertices per edge in the case of2-queue
and4-track subdivisions, namelyO(log qn(G)), is optimal to within a constant factor, for every graphG.

Applications to 3D polyline grid drawings are presented. For example, it is proved that every graphG has a 3D
polyline grid drawing with the vertices on a rectangular prism, and withO(log qn(G)) bends per edge. Finally, we
establish a tight relationship between queue layouts and so-called2-track thickness of bipartite graphs.
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1 Introduction
We consider undirected, finite, and simple graphsG with vertex setV (G) and edge setE(G). The
number of vertices and edges ofG are respectively denoted byn = |V (G)| andm = |E(G)|. The
subgraph ofG induced by a set of verticesA ⊆ V (G) is denoted byG[A]. For all A,B ⊆ V (G) with
A ∩ B = ∅, we denote byG[A,B] the bipartite subgraph ofG with vertex setA ∪ B and edge set
{vw ∈ E(G) : v ∈ A,w ∈ B}. The spanning subgraph ofG induced by a set of edgesS ⊆ E(G) is
denoted byG[S].

A subdivisionof a graphG is a graph obtained fromG by replacing each edgevw ∈ E(G) by a path
with at least one edge whose endpoints arev andw. Internal vertices on this path are calleddivision
vertices, whilev andw are calledoriginal vertices. LetG′, G′′ andG′′′ be the subdivisions ofG with
respectively one, two and three division vertices per edge. Throughout this paper, we implicitly use the
fact that planarity and non-planarity is preserved by subdividing edges. A graphH is aminor of G if H
is isomorphic to a graph obtained from a subgraph ofG by contracting edges. A minor-closed class of
graphs isproper if it is not the class of all graphs.

A graph parameteris a functionα that assigns to every graphG a non-negative integerα(G). Let G
be a class of graphs. Byα(G) we denote the functionf : N → N, wheref(n) is the maximum ofα(G),
taken over alln-vertex graphsG ∈ G. We sayG hasboundedα if α(G) ∈ O(1). A graph parameter
α is bounded bya graph parameterβ (for some classG), if there exists abinding function g such that
α(G) ≤ g(β(G)) for every graphG (in G). If α is bounded byβ (in G) andβ is bounded byα (in G) then
α andβ aretied (in G). Clearly, ifα andβ are tied then a graph familyG has boundedα if and only if G
has boundedβ. These notions were introduced by Gyárfás [51] in relation to near-perfect graph families
for which the chromatic number is bounded by the clique-number.

1.1 Stack and Queue Layouts
An orderingof a setS is a total order<σ onS. It will be convenient to interchange “σ” and “<σ” when
there is no ambiguity. For instance, we sayS is ordered byσ. For some ordered setS, let

←−
S denote

the same set with the reverse ordering. Avertex orderingof a graphG is an orderingσ of the vertex set
V (G). At times, it will be convenient to expressσ by the list(v1, v2, . . . , vn), wherevi <σ vj if and only
if 1 ≤ i < j ≤ n. Suppose thatV1, V2, . . . , Vk are disjoint sets of vertices, such that eachVi is ordered by
<i. Then(V1, V2, . . . , Vk) denotes the vertex orderingσ such thatv <σ w wheneverv ∈ Vi andw ∈ Vj

with i < j, or v ∈ Vi, w ∈ Vi, andv <i w. We writeV1 <σ V2 <σ · · · <σ Vk.
In a vertex orderingσ of a graphG, letL(e) andR(e) denote the endpoints of each edgee ∈ E(G) such

thatL(e) <σ R(e). Consider two edgese, f ∈ E(G) with no common endpoint such thatL(e) <σ L(f).
If L(e) <σ L(f) <σ R(e) <σ R(f) thene andf cross, and ifL(e) <σ L(f) <σ R(f) <σ R(e) then
e andf nest, andf is nested insidee. A stack(respectively,queue) is a set of edgesE′ ⊆ E(G) such
that no two edges inE′ cross (nest). Observe that when traversing the vertex ordering, edges in a stack
(queue) appear in LIFO (FIFO) order—hence the names. A queueE′ has a total order�, called thequeue
order, such that

∀e, f ∈ E′, e � f ⇐⇒ L(e) ≤σ L(f) andR(e) ≤σ R(f) . (1)

A k-stack(queue) layoutof G consists of a vertex orderingσ of G and a partition{E` : 1 ≤ ` ≤ k}
of E(G), such that eachE` is astack(queue) in σ. At times we writestack(e) = ` (or queue(e) = `) if
e ∈ E`. Examples of3-stack and3-queue layouts ofK6 are illustrated in Figure 1.
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(a) (b)

Fig. 1: Layouts ofK6: (a)3-stack, (b)3-queue.

A graph admitting ak-stack (queue) layout is called ak-stack(queue) graph. Thestack-numberof a
graphG, denoted bysn(G), is the minimumk such thatG is ak-stack graph. Thequeue-numberof a
graphG, denoted byqn(G), is the minimumk such thatG is ak-queue graph. By interpreting a queue
layout as a partition of the edges into sets that satisfy (1), the queue-number of a graph is a natural measure
of its ‘linearity’.

For a summary of applications and results regarding stack and queue layouts see our companion paper
[29]. Despite a wealth of research on stack and queue layouts, the following fundamental questions of
Heathet al. [56] remain unanswered.

Open Problem 1. [56]Is stack-number bounded by queue-number?

Open Problem 2. [56]Is queue-number bounded by stack-number?

Suppose that stack-number is bounded by queue-number, but queue-number is not bounded by stack-
number. This would happen, for example, if there exists a constants such that for everyq there exists an
s-stack graph with noq-queue layout. Then we would consider stacks to be more ‘powerful’ than queues,
and vice versa.

Heathet al. [56], in their study of the relationship between stack- and queue-number, restricted them-
selves to linear binding functions. For example, for stack-number to be bounded by queue-number meant
that sn(G) ∈ O(qn(G)) for every graphG. Thus Heathet al. [56] considered Open Problem 1 to be
solved in the negative by displaying an infinite class of graphsG, such thatsn(G) ∈ Ω(3qn(G)). In our
more liberal definition of a binding function, this result merely provides a lower bound on a potential
binding function.

Depth-first search and breadth-first search can be thought of as the same algorithm, where depth-first
search operates with a stack and breadth-first search operates with a queue. Thus stack and queue layouts
of graphs are a means for measuring the relative power of depth-first search and breadth-first search.
It is no coincidence that many algorithms for computing stack layouts use depth-first search [16, 47],
while breadth-first search is often used for computing queue layouts [27, 56, 86]. These ideas are made
particularly concrete in the case of trees (see Lemmata 15 and 16).

1.2 Stack and Queue Layouts of Subdivisions
Stack and queue layouts of graph subdivisions are a central topic of this paper. The following fundamental
result has been observed by many authors [7, 39, 70, 73]. The well known proof, which we include for
completeness, can be traced to the seminal result by Atneosen [3] that every graph has an embedding in
a 3-page book. Kainen and Overbay [64] state that, according to Jozef Przytycki, this result was also
discovered by Holtz, a student of Reidemeister.
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Theorem 1. [7, 39, 70, 73]Every graph has a3-stack subdivision.

Proof: Let σ be an arbitrary vertex ordering of a given graphG. Consider the graphG′′ with each edge of
G subdivided twice. For each vertexv ∈ V (G), insert intoσ the vertices{x : vx ∈ E(G′′)} immediately
to the right ofv, and assign the edgesE∗ = {vx : v ∈ V (G), vx ∈ E(G′′)} to the first stack. Clearly
no two edges inE∗ cross inσ. It remains to assign a subdivision of the matchingE(G′′) \ E∗ to the
remaining two stacks. This amounts to drawing a matching in the plane with no edge crossings such that
the vertices are fixed to a line. Clearly this can be accomplished. An edge ofE(G′′) \ E∗ is subdivided
every time it crosses the line. Thus every graph has a3-stack subdivision. 2

Note that3-stack layouts are important in complexity theory [45, 46, 65], and3-stack layouts of knots
and links, so calledDynnikov diagrams, have also recently been considered [18, 33, 34, 35, 36, 67, 76, 91].

The proof of Theorem 1 provides no bound on the number of division vertices. It is interesting to deter-
mine the minimum number of division vertices in a3-stack subdivision of a given graph. The previously
best known bounds are due to Enomoto and Miyauchi [39], who proved that every graph has a3-stack
subdivision withO(log n) division vertices per edge. Moreover, a trade-off between the number of stacks
and the number of division vertices per edge was observed. In particular, Enomoto and Miyauchi [71, 73]
proved that for alls ≥ 3, every graph has ans-stack subdivision withO(logs−1 n) division vertices per
edge, and Enomotoet al. [40] proved that this bound is tight up to a constant factor forKn (and some
slightly more general families). Thus Enomotoet al. [40] claimed that theO(log n) upper bound is ‘es-
sentially best possible’. Note that Miyauchi [72] recently improved the upper bound toO(logs−1 n) for
bipartite graphs withn vertices in the smaller bipartition.

We prove a refinement of the upper bound of Enomoto and Miyauchi [39], in which the number of
division vertices per edge depends on the stack-number or queue-number of the given graph. In particular,
every graphG has a3-stack subdivision withO(log min{sn(G), qn(G)}) division vertices per edge.
Sincesn(G) andqn(G) are both no more thann, our bound is at most theO(log n) bound of Enomoto and
Miyauchi [39] (ignoring constant factors). This result has a significant implication for Open Problem 2.
Namely that queue-number is bounded by stack-number if and only if3-stack graphs have bounded queue-
number (Theorem 8). For this corollary to hold, it is essential that the number of division vertices per edge
is some function ofsn(G), thus emphasising the significance of our bound in comparison with previous
results. As described in Table 1, our result for3-stack subdivisions generalises tos-stack subdivisions in
a similar fashion to the result of Miyauchi [73].

We prove an analogous result for queue layouts. In particular, every graphG has a2-queue subdivision
with O(log qn(G)) division vertices per edge. Thus, at least for the representation of graph subdivisions,
two queues suffice rather than three stacks. In this sense, queues are more powerful than stacks. Moreover,
our bound on the number of division vertices per edge is optimal up to a constant factor for all graphs.
Unfortunately, no such universal lower bound is known for stack layouts of subdivisions.

Stack and queue layouts are generalised through the notion of amixed layout. Here each edge of a
graph is assigned to a stack or to a queue, defined with respect to a common vertex ordering. We speak
of an s-stackq-queue mixed layoutand ans-stackq-queue graph. Part of the motivation for studying
mixed stack and queue layouts is that they model the double-ended queue (dequeue) data structure, since
a dequeue may be simulated by two stacks and one queue. Observe that the proof of Theorem 1 implies
that every graph has a2-stack1-queue subdivision, since the first stack is also a queue, whereas we prove
that every graph has a1-stack1-queue subdivision.
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Tab. 1: Layouts of a subdivision of a graphG.

graph type of layout # division vertices per edge reference

arbitrary s-stack (s ≥ 3) O(logs−1 sn(G)) Theorem 7
arbitrary s-stack (s ≥ 3) O(logs−1 qn(G)) Theorem 9
planar 2-stack 1 [49, 66]; Lemma 31

arbitrary q-queue (q ≥ 2) Θ(logq qn(G)) Theorems 4 and 5
planar 1-queue n− 2 Theorem 20

arbitrary s-stackq-queue (s ≥ 1, q ≥ 1) O(log(s+q)q sn(G)) Theorem 11
arbitrary s-stackq-queue (s ≥ 1, q ≥ 1) O(log(s+q)q qn(G)) Theorem 12
planar 1-stack1-queue 4 Lemma 34

arbitrary (d + 1, 2)-track (d ≥ 2) Θ(logd qn(G)) Theorems 14 and 17
arbitrary (d, 3)-track (d ≥ 2) Θ(logd qn(G)) Theorems 15 and 17
arbitrary (d + 2)-track (d ≥ 2) Θ(logd qn(G)) Theorems 16 and 17
planar 3-track n− 2 Theorem 21

1.3 Track Layouts
A vertext-colouring of a graphG is a partition{Vi : 1 ≤ i ≤ t} of V (G) such that for every edge
vw ∈ E(G), if v ∈ Vi andw ∈ Vj theni 6= j. Suppose that each colour classVi is ordered by<i. Then
the ordered set(Vi, <i) is called atrack, and{(Vi, <i) : 1 ≤ i ≤ t} is at-track assignmentof G. We say
track(v) = i whenv ∈ Vi. To ease the notation we denote track assignments by{Vi : 1 ≤ i ≤ t} when
the ordering on each colour class is implicit.

Thespanof an edgevw in a track assignment{Vi : 1 ≤ i ≤ t} is |i − j| wherev ∈ Vi andw ∈ Vj .
That there is a fixed ordering of the tracks in a track assignment is implicit in the definition of span.

An X-crossingin a track assignment consists of two edgesvw andxy such thatv <i x andy <j w, for
distinct coloursi andj. An edgek-colouringof G is simply a partition{Ei : 1 ≤ i ≤ k} of E(G). An
edgevw ∈ Ei is said to becolouredi, writtencol(vw) = i. A (k, t)-track layoutof G consists of at-track
assignment ofG and an edgek-colouring ofG with no monochromatic X-crossing. A graph admitting
a (k, t)-track layout is called a(k, t)-track graph. The minimumt such that a graphG is a (k, t)-track
graph is denoted bytnk(G).

(1, t)-track layouts (that is, with no X-crossing) are of particular interest due to applications in three-
dimensional graph drawing (see Section 5). A(1, t)-track layout is called at-track layout. A graph
admitting at-track layout is called at-track graph. Thetrack-numberof G is tn1(G), simply denoted by
tn(G). For a summary of bounds on the track-number see our companion paper [28].

The following lemma highlights the fundamental relationship between track layouts, and queue and
stack layouts. Its proof follows immediately from the definitions, and is illustrated in Figure 2 fork = 1.

Lemma 1. Let{A,B} be a track assignment of a bipartite graphG. Then the following are equivalent:

(a) {A,B} admits a(k, 2)-track layout ofG,

(b) the vertex ordering(A,B) admits ak-queue layout ofG, and

(c) the vertex ordering(A,
←−
B ) admits ak-stack layout ofG. 2
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(a) (b) (c)

Fig. 2: Layouts of a caterpillar: (a)2-track, (b)1-queue, (c)1-stack.

The relationship between queue and track layouts in Lemma 1 was extended by Dujmović et al. [28]
who proved that queue-number and track-number are tied.

Our main result concerning track layouts highlights the trade-off between few tracks and few edge
colours. We prove that every graphG has a subdivisionD with O(log qn(G)) division vertices per edge,
such that (a)D has a(1, 4)-track layout, (b)D has a(2, 3)-track layout, and (c)D has a(3, 2)-track layout.
We shall see that all of these numeric values are best possible for any non-planar graphG. Moreover, the
number of division vertices per edges is optimal, since any subdivision satisfying (a), (b) or (c) has an
edge withΩ(log qn(G)) division vertices. For alld ≥ 2, our results generalise to(1, d + 2)-, (d, 3)-, and
(d + 1, 2)-track layouts as summarised in Table 1.

1.4 Thickness and Topological Parameters
Let α be a graph parameter. Letsub-α be the graph parameter defined bysub-α(G) = α(G′) for every
graphG. We sayα is topological if α andsub-α are tied. For example, chromatic number is not topo-
logical sinceG′ is bipartite. On the other hand treewidth is topological. In fact, it is well known that the
treewidth of a graphG equals the treewidth of every subdivision ofG [23, Exercise 13, p. 278].

The thicknessof a graphG, denoted byθ(G), is the minimum number of subgraphs in a partition of
E(G) into planar subgraphs [63]. Thickness is not topological sinceθ(G′) ≤ 2. Beineke [4] attributes
this observation to Tutte. The proof is straightforward. LetV (G) = {v1, v2, . . . , vn}. Denote byxi,j the
division vertex of each edgevivj with i < j. Then{vixi,j : 1 ≤ i < j ≤ n} and{vixj,i : 1 ≤ j < i ≤ n}
is a partition ofE(G′) in two (planar) forests.

Thegeometric thicknessof a graphG, denoted byθ(G), is the minimum number of colours such that
G can be drawn in the plane with edges as coloured straight-line segments, such that monochromatic
edges do not cross [24, 63]. Every graphG has such a drawing in the plane with an arbitrary set of
preassigned vertex locations, and withθ(G) edge colours [53, 81]. Thus, the key difference between
geometric thickness and (graph-theoretic) thickness is that geometric thickness requires the edges to be
drawn as straight line-segments, whereas thickness allows edges to bend arbitrarily. Eppstein [41] proved
thatθ(G′) ≤ 2 for every graphG. Thus geometric thickness is not topological.

Stack-number (or book-thickness) is equivalent to geometric thickness with the additional requirement
that the vertices are in convex position [5]. Thus

∀ graphG, θ(G) ≤ θ(G) ≤ sn(G) . (2)

Blankenship and Oporowski [7], Enomoto and Miyauchi [39], and Eppstein [41] independently proved
thatsn(Kn) is bounded bysn(K ′

n). The proofs by Blankenship and Oporowski [7] and Eppstein [41] use
essentially the same Ramsey-theoretic argument. Sinceθ(K ′

n) = 2, Eppstein [41] observed that stack-
number is not bounded by geometric thickness. Using a more elaborate Ramsey-theoretic argument,
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Eppstein [41] proved that geometric thickness is not bounded by thickness. In particular, for everyt there
exists a graph with thickness three and geometric thickness at leastt. Blankenship and Oporowski [7]
conjecture that their result for complete graphs extends to all graphs.

Conjecture 1. [7] There exists a functionf , such that for every graphG and every subdivisionH of G
with at most one division vertex per edge, we havesn(G) ≤ f(sn(H)).

In Lemma 13 we prove thatsub-sn is bounded bysn. Thus the truth of Conjecture 1 would imply
that stack-number is topological. Moreover, in Theorem 10 we prove that if Conjecture 1 is true then
stack-number is bounded by queue-number, thus giving an affirmative solution to Open Problem 1. In
Sections 2.1 and 2.2 we prove that both track-number and queue-number are topological.

We now relate queue-number to a new thickness parameter. Let the2-track thicknessof a bipartite graph
G, denoted byθ2(G), be the minimumk such thatG has a(k, 2)-track layout. By (2) and Lemma 1(c),

∀ bipartite graphsG, θ(G) ≤ θ(G) ≤ sn(G) ≤ θ2(G) .

Let the 2-track sub-thicknessof a graphG, denoted bysub-θ2(G), be the2-track thickness ofG′.
This is well-defined sinceG′ is bipartite. In Theorem 2 we prove that queue-number is tied to2-track
thickness for bipartite graphs, and queue-number is tied to2-track sub-thickness (for all graphs). The
immediate implication for Open Problem 1 is that stack-number is bounded by queue-number if and only
if stack-number is bounded by2-track sub-thickness. While it is an open problem whether stack number
is bounded by track-number or by queue-number, in our companion paper [28] we prove the weaker result
that geometric thickness is bounded by track-number, which implies that geometric thickness is bounded
by queue-number.

1.5 Three-Dimensional Polyline Drawings
A three-dimensional polyline grid drawingof a graph, henceforth called a3D polyline drawing, represents
the vertices by distinct points inZ3 (calledgridpoints), and represents each edge as a polyline between
its endpoints with bends (if any) also at gridpoints, such that distinct edges only intersect at common
endpoints, and each edge only intersects a vertex that is an endpoint of that edge. A 3D polyline drawing
with at mostb bends per edge is called a3D b-bend drawing. A 3D 0-bend drawing is called a3D straight-
line drawing. Of course, a 3Db-bend drawing of a graphG is precisely a 3D straight-line drawing of a
subdivision ofG with at mostb division vertices per edge.

In contrast to the case in the plane, it is well known that every graph has a 3D straight-line drawing.
We therefore are interested in optimising certain measures of the aesthetic quality of such drawings. The
bounding boxof a 3D polyline drawing is the minimum axis-aligned box containing the drawing. If the
bounding box has side lengthsX−1, Y −1 andZ−1, then we speak of anX×Y ×Z polyline drawing
with volumeX · Y · Z. That is, the volume of a 3D polyline drawing is the number of gridpoints in the
bounding box. This definition is formulated so that two-dimensional drawings have positive volume.

This paper initiates the study of upper bounds on the volume and number of bends per edge in arbitrary
3D polyline drawings. (Three-dimensional polyline graphs drawings with orthogonal edges have been
previously studied; see [38, 100] for example.) The volume of 3D straight-line drawings has been widely
studied [10, 13, 17, 20, 21, 22, 27, 30, 44, 55, 80, 84]. Three-dimensional graph drawings in which the
vertices are allowed real coordinates have also been investigated [12, 14, 15, 19, 37, 48, 58, 59, 60, 61, 62,
74, 79]. Aesthetic criteria besides volume that have been considered include symmetry [58, 59, 60, 61, 62],
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aspect ratio [15, 48], angular resolution [15, 48], edge-separation [15, 48], and convexity [14, 15, 37].
Three-dimensional graph drawing has applications in software visualisation [31, 82, 94, 95, 96, 97] and
VLSI circuit layout [1, 2, 68, 68, 78, 85, 87, 90, 99] for example.

Table 2 summarises the best known upper bounds on the volume and bends per edge in 3D polyline
drawings, including those established in this paper. In general, there is a tradeoff between few bends and
small volume in such drawings, which is evident in Table 2. Our upper bound ofO(m log q) is within a
factor ofO(log q) of being optimal for allq-queue graphs, since Boseet al. [10] proved that 3D polyline
drawings have at least18 (n + m) volume.

Tab. 2: Volume of 3D polyline drawings of graphs withn vertices andm ≥ n edges.

graph family bends per edge volume reference
arbitrary 0 O(n3) Cohenet al. [17]
arbitrary 0 O(m4/3n) Dujmović and Wood [30]
maximum degree∆ 0 O(∆mn) Dujmović and Wood [30]
bounded maximum degree 0 O(m1/2n) Dujmović and Wood [30]
bounded chromatic number 0 O(n2) Pachet al. [80]
bounded chromatic number 0 O(m2/3n) Dujmović and Wood [30]
H-minor free (H fixed) 0 O(n3/2) Dujmović and Wood [30]
bounded treewidth 0 O(n) Dujmović et al. [27]
c-colourableq-queue 1 O(cqm) Theorem 24
arbitrary 1 O(nm) Theorem 25
q-queue 2 O(qn) Theorem 26
q-queue (constantε > 0) O(1) O(mqε) Theorem 27
q-queue O(log q) O(m log q) Theorem 28

1.6 Organisation

This paper is organised as follows. Section 2 presents results regarding queue, stack and track layouts of
the subdivisionsG′ andG′′. Section 3 presents most of our main results discussed above. In Section 3.2
we review known results concerning stack and queue layouts of trees, and prove a useful lemma about
mixed stack and queue layouts of trees. Section 4 considers layouts of subdivisions of planar graphs.
Finally, in Section 5 we present applications in three-dimensional polyline graph drawing.

2 Small Subdivisions
In this section we consider layouts ofG′ andG′′, the subdivisions of a graphG with one and two division
vertices per edge, respectively.

2.1 Track Layouts

Lemma 2. For everyq-queue graphG, the subdivisionG′ has a(q + 1, 2)-track layout. That is,2-track
sub-thickness is bounded by queue-number. In particular,sub-θ2(G) ≤ qn(G) + 1.
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Proof: Let σ be the vertex ordering in aq-queue layout ofG with queues{E` : 1 ≤ ` ≤ q}. Recall
thatL(e) andR(e) denote the left and right endpoints inσ of each edgee. Let X(e) denote the division
vertex ofe in G′. Let≺ be the total order on{X(e) : e ∈ E(G)} such thatX(e) ≺ X(f) whenever
L(e) <σ L(f), or L(e) = L(f) andR(e) <σ R(f). Consider(V (G), σ) and({X(e) : e ∈ E(G)},≺)
to define a2-track assignment ofG′. Colour the edges ofG′ as follows. For all edgese ∈ E`, let
col(L(e)X(e)) = 0 andcol(X(e)R(e)) = `. Since in≺, division vertices are ordered primarily by the left
endpoint of the corresponding edge, no two edgesL(e)X(e) andL(f)X(f) form an X-crossing. Suppose
e′ = X(e)R(e) andf ′ = X(f)R(f) form an X-crossing. Without loss of generalityR(e) <σ R(f) and
X(f) ≺ X(e). By constructionL(f) <σ L(e), ande is nested insidef in σ. Thuse andf are in distinct
queues, andcol(e′) 6= col(f ′). Hence there is no monochromatic X-crossing. The number of edge colours
is q + 1. Therefore we have a(q + 1, 2)-track layout ofG′. 2

Lemma 2 is best possible in the following (weak) sense. LetG be a2-queue subdivision of a non-
planar graph, which exists by Theorem 4 below. IfG′ has a(k, 2)-track layout, thenk ≥ 3 sinceG′ is
non-planar, and by Theorem 22 below, only planar graphs have(2, 2)-track layouts. In Lemma 3 below
we prove a complimentary result to Lemma 2.

Lemma 3. Queue-number is bounded by2-track sub-thickness. In particular, ifsub-θ2(G) ≤ k for some
graphG, thenqn(G) ≤ 1

2k(k + 1).

Proof: Clearly we can assume thatG is connected. Thus in the given(k, 2)-track layout ofG′, the vertices
of G are on one track and the division vertices are on the other track. Letσ be the ordering of the original
vertices ofG on the first track, and letπ be the ordering of the division vertices on the second track. Let
1 ≤ col(e) ≤ k be the colour assigned to each edgee of G′. ConsiderV (G) to be ordered byσ. Partition
the edges ofG into queues as follows. For each edgevw ∈ E(G) subdivided by vertexx in G′, let
queue(vw) = {col(vx), col(wx)}. We now prove that this defines a queue layout ofG. Sayvw is nested
insideab in σ. Without loss of generalitya <σ v <σ w <σ b. Let vw be divided byx in G′, and letab
be divided byc in G′. First suppose thatx <π c in the second track. Then each ofxw andxv form an
X-crossing withac. Thuscol(xw) 6= col(ac) andcol(xv) 6= col(ac). Hencequeue(vw) 6= queue(ab).
Now supposec <π x in the second track. Thenbc forms an X-crossing with each ofxw andxv. Thus
col(bc) 6= col(xw) andcol(bc) 6= col(xv). Hencequeue(vw) 6= queue(ab). The number of queues in the
queue layout ofG is

(
k
2

)
+ k = 1

2k(k + 1). 2

The observant reader will notice parallels between the above proof and that of the Erdös-Szekeres
Theorem [42] regarding increasing and decreasing subsequences. In fact, the Erdös-Szekeres Theorem in
conjunction with Lemma 23 below can prove Lemma 3 with the slightly weaker bound ofqn(G) ≤ k2.

Theorem 2. Queue-number is tied to2-track thickness for bipartite graphs, and queue-number is tied to
2-track sub-thickness (for all graphs).

Proof: The first claim is proved in our companion paper [28]. The second claim follows from Lemmata 2
and 3. 2

Lemma 4. Everyc-colourableq-queue graphG satisfies:

(a) tn2(G′) ≤ q + 1, (b) tn(G′) ≤ c(q + 1), and (c) tn(G′′) ≤ q + 2 .
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Proof: Let σ be the vertex ordering in aq-queue layout ofG with queues{E` : 1 ≤ ` ≤ q}. Let X(e)
denote the division vertex ofe in G′. Let X` = {X(e) : e ∈ E`} for each1 ≤ ` ≤ q. Let <` denote the
queue order of eachE`. Consider<` to also orderX`. That is, for all edgese, f ∈ E`,

X(e) ≤` X(f) ⇐⇒ L(e) ≤σ L(f) andR(e) ≤σ R(f) . (3)

First we prove (a). The set{(X`, <`) : 1 ≤ ` ≤ q} ∪ {(V (G), σ)} defines a(q + 1)-track assignment
of G′. Colour edgesL(e)X(e) of G′ blue, and colour edgesR(e)X(e) of G′ red. We claim that there
is no monochromatic X-crossing. All edges ofG′ are between a vertex ofG and a division vertex. Thus
an X-crossing must involve two division vertices on the same track. Consider two edgese andf with
X(e) <` X(f) for some1 ≤ ` ≤ q. By (3), each of the pairs of edges{L(e)X(e), L(f)X(f)} and
{R(e)X(e), R(f)X(f)} do not form an X-crossing. For each pair of edges{L(e)X(e), R(f)X(f)} and
{R(e)X(e), L(f)X(f)} the edges are coloured differently. Thus there is no monochromatic X-crossing
and we have a(2, q + 1)-track layout ofG′.

Now we prove (b). Let{Vi : 1 ≤ i ≤ c} be a vertexc-colouring of G. Let Xi,` = {X(e) :
e ∈ E`, L(e) ∈ Vi} for all 1 ≤ ` ≤ q and1 ≤ i ≤ c. Thus{(Xi,`, <`) : 1 ≤ i ≤ c, 1 ≤ ` ≤
q} ∪ {(Vi, <σ) : 1 ≤ i ≤ c} defines a(qc + c)-track assignment ofG′. Consider division vertices
X(e), X(f) ∈ Xi,` such thatX(e) <` X(f). By (3), L(e) ≤ L(f) in the ordering onVi. Thus the pair
of edges{L(e)X(e), L(f)X(f)} do not form an X-crossing. Since bothR(e) andR(f) are not inVi,
the pairs of edges{L(e)X(e), R(f)X(f)} and{R(e)X(e), L(f)X(f)} do not form an X-crossing. If
bothR(e) andR(f) are in the same colour classVj , thenR(e) ≤j R(f) by (3), and the pair of edges
{R(e)X(e), R(f)X(f)} do not form an X-crossing. Thus we have a(qc + c)-track layout ofG′.

Finally we prove (c). Let(L(e), X(e), Y (e), R(e)) be the path replacing each edgee in G′′. The
first track consists of{(V (G), σ)}. The second track consists of{X(e) : e ∈ E(G)}, ordered so that
X(e) < X(f) wheneverL(e) <σ L(f), or L(e) = L(f) andR(e) <σ R(f). Edges between the first
and second track are of the formL(e)X(e). Since verticesX(e) in the second track are primarily ordered
by L(e), there is no X-crossing between the first and second track. Now define and orderY` as withX`.
Then(Y`, <`) : 1 ≤ ` ≤ q} comprises the finalq tracks. An X-crossing involving vertices on these tracks
can only be between pairs of edges{X(e)Y (e), X(f)Y (f)} or {Y (e)R(e), Y (f)R(f)}, wheree andf
are in the same queue. By (3), such pairs of edges do not form an X-crossing. Thus we have(q +2)-track
layout ofG′′. 2

We now describe how to produce a track layout ofG′ given a track layout of a graphG. We will need
the following result from our companion paper [28].

Lemma 5. [28]Queue-number is bounded by track-number. In particular, every(k, t)-track graph with
maximum spans (≤ t− 1) has aks-queue layout.

Lemma 6. LetG be a(k, t)-track graph with maximum spans (≤ t− 1). Then

(a) tnks+1(G′) ≤ 2, (b) tnk(G′) ≤ 2t− 1, and (c) tn(G′) ≤ k(t− 1) + t .

Proof: Let {Vi : 1 ≤ i ≤ t} be a(k, t)-track layout ofG with spans. Let {E` : 1 ≤ ` ≤ k} be
the corresponding edge-colouring. By Lemma 5,G has aks-queue layout. By Lemma 4(a),G′ has a
(ks + 1, 2)-track layout. This proves part (a).

For each edgevw of G, let both edges inG′ corresponding tovw be coloured by the colour assigned
to vw. Now we prove part (b). For each1 ≤ i ≤ t − 1, let Xi ⊆ V (G′) \ V (G) be the set consisting of
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G

(V (G), σ)

{X(e) : e ∈ E(G)}

Y1

Y2

Y3

Fig. 3: Illustration for Lemma 4(c).

the division vertices of edgesvw ∈ E(G) such thatv ∈ Vi, w ∈ Vj , andi < j. Order the vertices inXi

with respect to the order of the corresponding vertices inVi, breaking ties by the order in someVj where
applicable. Clearly there is no monochromatic X-crossing, where vertices ofG \ G′ remain in the given
track layout. The number of tracks is2t− 1.

Finally we prove part (c). For each1 ≤ i ≤ t − 1 and1 ≤ ` ≤ k, let Xi,` ⊆ Xi be the set consisting
of the division vertices of edgesvw ∈ E` such thatv ∈ Vi, w ∈ Vj , andi < j. Order eachXi,` as inXi.
All edges ofG′ incident to a vertex inXi,` are monochromatic. Thus there is no X-crossing regardless of
the edge colours. The number of tracks ist + k(t− 1). 2

We now describe how to produce a track layout of a graphG given a track layout ofG′.

Lemma 7. If a graphG is vertexc-colourable andG′ has a(k, t)-track layout, thenG has a(tk2, ct)-
track layout.

Proof: Let {Vi : 1 ≤ i ≤ c} be a vertexc-colouring ofG, and for each vertexv ∈ V (G), let col(v) = i
wherev ∈ Vi. Let {(Wj , <j) : 1 ≤ j ≤ t} be a(k, t)-track layout ofG′ with edge colouring{E` : 1 ≤
` ≤ k}. LetVi,j = Vi∩Wj for each1 ≤ i ≤ c and1 ≤ j ≤ t. Then{(Vi,j , <j) : 1 ≤ i ≤ c, 1 ≤ j ≤ t} is
a track assignment ofG. We now colour each edgevw of G. Without loss of generalitycol(v) < col(w).
Let x be the division vertex ofvw in G′, and sayx ∈ Wj , vx ∈ E`1 , andwx ∈ E`2 . Then colour
vw by the ordered triple(j, `1, `2). Note that the number of edge colours istk2. We claim that there
is no monochromatic X-crossing in the track assignment ofG. Suppose for the sake of contradiction,
that there are monochromatic edgesvw andpq in G that form an X-crossing. Without loss of generality,
col(v) = col(p) < col(w) = col(q), and in the given track layout ofG′, v <j1 p andq <j2 w for some
1 ≤ j1, j2 ≤ t. Let x andy be the division vertices ofvw andpq, respectively. Sincevw andpq are
monochromatic,x andy are in the same trackWj3 . If x <j3 y thenwx andqy form a monochromatic
X-crossing in the given track layout, and ify <j3 x thenvx andpy form a monochromatic X-crossing in
the given track layout. In both cases we have the desired contradiction. Thus there is no monochromatic
X-crossing in the track assignment ofG, and we have a(tk2, ct)-track layout ofG. 2

Lemma 8. For every graphG, if tn(G′) ≤ t thenG is vertext(2t− 1)-colourable.
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Proof: Consider at-track layout ofG′. For 1 ≤ i ≤ t, let Vi be the set of original vertices ofG on
the i-th track. LetGi be the subgraph ofG induced byVi. Let Ei,j be the set of edgesvw of G for
which v, w ∈ Vi and the division vertex ofvw is in thej-th track ofG′ (1 ≤ j ≤ t, j 6= i). Each vertex
in Vi is incident to at most two edges inEi,j , as otherwise there would be an X-crossing in the track
layout ofG′. ThusGi has maximum degree at most2(t− 1). HenceGi is (2t− 1)-colourable, andG is
t(2t− 1)-colourable. 2

Theorem 3. Track-number is topological. In particular, every graphG satisfies

tn(G′) ≤ 2 tn(G)− 1 ,

and if tn(G′) ≤ t then

tn(G) ≤ (2t− 1)t2 · 4(t
2)((2t−1)t2−1) .

Proof: The first claim is Lemma 6(c) withk = 1. Now suppose thattn(G′) ≤ t. By Lemma 8,G is
t(2t − 1)-colourable. By Lemma 7 withk = 1 andc = t(2t − 1), G has a(t, t2(2t − 1))-track layout.
In our companion paper [28], we proved that a(k′, t′)-track layout of a graphG can be refined to an

(edge-monochromatic)t′ · 4(k′
2 )(t′−1)-track layout ofG. The lemma follows by applying this result with

k′ = t andt′ = t2(2t− 1). 2

2.2 Queue Layouts
In this section we study the relationship between the queue-number of a graphG and the queue-number
of G′. First note that Lemmata 2 and 5 imply the following.

Lemma 9. The subdivisionG′ of a q-queue graphG has a(q + 1)-queue layout. 2

We have the following converse result.

Lemma 10. For every graphG, if G′ has aq-queue layout with vertex orderingσ, thenσ restricted to
V (G) admits aq(2q + 1)-queue layout ofG.

Proof: Let X be the set of division vertices ofG′. In our companion paper [28], we prove that for every
vertex colouring{Vi : 1 ≤ i ≤ c} of a q-queue graphH, there is a(2q, c)-track layout ofH with tracks
{Vi : 1 ≤ i ≤ c}. Now apply this result toG′. The vertex setsV (G) andX define a vertex2-colouring
of G′. ThusG′ has a(2q, 2)-track layout with tracks(V (G), σ) and(X, σ). That is,sub-θ2(G) ≤ 2q. By
Lemma 3,σ restricted toV (G) admits aq(2q + 1)-queue layout ofG. 2

Lemmata 9 and 10 imply that queue-number is topological, as mentioned in Section 1.4. We now
prove a slightly more general result than Lemma 10 that will be used in Section 3.5. Here we start with a
subdivision with at most one division vertex per edge rather than exactly one division vertex per edge.

Lemma 11. LetD be aq-queue subdivision of a graphG with at most one division vertex per edge. Then
G has a2q(q + 1)-queue layout.

Proof: Let σ be the vertex ordering in aq-queue layout ofD. Let A be the set of edges ofG that are
subdivided inD, and letB the set of edges ofG that are not subdivided inD. By Lemma 10,G[A] has
a q(2q + 1)-queue layout with vertex orderingσ. By assumption,G[B] has aq-queue layout with vertex
orderingσ. ThusG has a2q(q + 1)-queue layout with vertex orderingσ. 2
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2.3 Stack Layouts
We now describe how to produce a stack layout ofG′ from a queue, stack or track layout ofG. By
Lemmata 1(c) and 2 we have:

Lemma 12. The subdivisionG′ of a q-queue graphG has a(q + 1)-stack layout. That is,sn(G′) ≤
qn(G) + 1. 2

Lemma 13. The subdivisionG′ of ans-stack graphG has an(s + 1)-stack layout. That is,sn(G′) ≤
sn(G) + 1.

Proof: Consider ans-stack layout ofG with vertex orderingσ. Denote the division vertex ofe in G′ by
X(e). We now create a stack layout ofG′. For each vertexv of G, let e1, e2, . . . , ed be all the edges
incident tov such that eachL(ei) = v, andR(ed) <σ R(ed−1) <σ · · · <σ R(e1). Add the division
verticesX(e1), X(e2), . . . , X(ed) immediately to the right ofv in this order. Clearly for all edgese and
f of G, the edgesL(e)X(e) andL(f)X(f) of G′ do not cross. Thus all these ‘left’ edges can be assigned
to a single stack. Each ‘right’ edgeX(e)R(e) of G′ inherits the stack assigned toe in G. Clearly no two
right edges in the same stack cross. ThusG′ has a(s + 1)-stack layout. 2

Lemma 14. LetG be a(k, t)-track graph with maximum spans (≤ t− 1). Then the subdivisionG′ of G
with one division vertex per edge has ans(k + 1)-stack layout.

Proof: Let {(Vi, <i) : 1 ≤ i ≤ t} be a(k, t)-track layout ofG with maximum spans, and with edge
colouring{E` : 1 ≤ ` ≤ k}. Denote byL(e) andR(e) the endpoints of each edgee of G whereL(e) ∈ Vi

andR(e) ∈ Vj with i < j. Denote byX(e) the division vertex inG′ of e. For each1 ≤ i ≤ t − 1 and
1 ≤ α ≤ s, let

Xi,α = {X(e) : e ∈ E(G), L(e) ∈ Vi, R(e) ∈ Vi+α} .

Since the maximum span iss, every division vertex ofG′ is in someXi,α. Order eachXi,α such that
for all X(e), X(f) ∈ Xi,α, we haveX(e) < X(f) wheneverL(f) <i L(e), or L(e) = L(f) and
R(f) <i+α R(e). Let σ be the vertex ordering ofG′ defined by(

V1, X1,s, X1,s−1, . . . , X1,1; V2, X2,s, X2,s−1, . . . , X2,1; . . . ; Vt

)
.

Note thatL(e) <σ X(e) <σ R(e) for every edgee of G. For all1 ≤ α ≤ s let

Eα = {L(e)X(e) : L(e) ∈ Vi, X(e) ∈ Xi,α} .

For all1 ≤ ` ≤ k and0 ≤ β ≤ s− 1, let

E`,β = {X(e)R(e) : e ∈ E`, L(e) ∈ Vi, i ≡ β (mod s)} .

This partitions the edges ofG′ into s(k + 1) sets. We claim that no two edges in a single set cross inσ.
Consider two edgese andf of G. SayL(e) ∈ Vi1 andL(f) ∈ Vi2 .

Consider edgesL(e)X(e) andL(f)X(f) both in someEα. Without loss of generalityi1 ≤ i2, and if
L(e) = L(f) thenR(e) <σ R(f). If i1 < i2 thenL(e) <σ X(e) <σ L(f) <σ X(f), andL(e)X(e)
andL(f)X(f) do not cross. Ifi1 = i2 then without loss of generalityL(e) ≤σ L(f). SinceL(e)X(e)
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andL(f)X(f) are inEα, bothX(e) andX(f) are inXi1,α. ThusL(e) ≤σ L(f) <σ X(f) <σ X(e),
andL(f)X(f) does not crossL(e)X(e). Thus each setEα is a valid stack inσ.

Now suppose the edgesX(e)R(e) andX(f)R(f) cross inσ. Without loss of generalityX(e) <σ

X(f) <σ R(e) <σ R(f). SayR(e) ∈ Vi3 andR(f) ∈ Vi4 . Theni1 ≤ i2 < i3 ≤ i4. If i1 < i2 then
i2 − i1 < i3 − i1 ≤ s. Thusi1 6≡ i2 (mod s), andX(e)R(e) andX(f)R(f) are not in the sameE`,β .
Now supposei1 = i2. SinceX(e) <σ X(f), we havei3 = i4 andL(f) ≤i1 L(e). If L(f) = L(e)
then, sinceX(e) <σ X(f) we haveR(f) <i3 R(e), and thusR(f) <σ R(e), a contradiction. If
L(f) <i1 L(e) thenR(e) <i3 R(f) sinceR(e) <σ R(f). That is,e andf form an X-crossing in the
track layout, and are thus coloured differently. HenceX(e)R(e) andX(f)R(f) are not in the sameE`,β .

Thus eachEα and eachE`,β is a valid stack, andG′ has as(k + 1)-stack layout. 2

3 Big Subdivisions
In this section we prove the main results introduced in Section 1. That is, every graphG has a3-stack
subdivision, a2-queue subdivision, a mixed1-stack1-queue subdivision, and a4-track subdivision. In
each case the number of division vertices per edge isO(log sn(G)) or O(log qn(G)). First of all we
introduce the notion of a(k,H)-layout.

3.1 (k,H)-Layouts

Let G andH be graphs.H is called ahost graph, and its vertices are callednodes. An H-partition ofG
is a partition{Hx ⊆ V (G) : x ∈ V (H)} of V (G) into bagsindexed by the nodes ofH such that for all
edgesvw ∈ E(G) either:

- ∃ nodex ∈ V (H) such that bothv, w ∈ Hx (vw is called anintrabag edge mappedto x), or

- ∃ edgexy ∈ E(H) such thatv ∈ Hx andw ∈ Hy (vw is called aninterbag edge mappedto xy).

Tree-partitions, that is aT -partition for some treeT , have been widely studied [9, 25, 26, 52, 88], and
were instrumental in the result by Dujmović et al. [27] that track-number and queue-number are bounded
by treewidth.

To obtain our main results for layouts of subdivisions we employ the following general structure. A
(k, H)-layout ofG is a pair({E1, E2, . . . , Ek}, {(Hx, <x) : x ∈ V (H)}) such that:

- {Hx ⊆ V (G) : x ∈ V (H)} is anH-partition ofG.

- ∀ nodesx ∈ V (H), <x is a total order onHx.

- {E1, . . . , Ek} is a colouring of the interbag edges such that there is no monochromaticX-crossing,
where an X-crossing consists of a pair of interbag edgesvw andpq such that for some edgexy ∈
E(H), v <x p andq <y w.

For each edgexy ∈ E(H), let kxy denote the number of colours used in the edge colouring of the
interbag edges ofG that are mapped toxy. For each nodex ∈ V (H), let sx denote the minimum number
of stacks such that<x admits ansx-stack layout ofG[Hx], and letqx denote the minimum number of
queues such that<x admits aqx-queue layout ofG[Hx].
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A (k,H)-layout with no intrabag edges is called a(k,H)-track layout. A (1,H)-track layout is called
anH-track layout. Observe that a(k,Kt)-track layout is simply a(k, t)-track layoutas defined in Sec-
tion 1.3.

Our main results are proved using the following strategy. First a particular host treeT (or tree-like
graphT ) is defined. The vertices of our graphG are mapped to the root ofT , and each edgevw of G is
mapped to some node ofT . At each non-root node ofT on the path from the root to the node thatvw is
mapped to, we add two division vertices tovw. This process produces a(k, T )-layout of a subdivision
D of G, and is described in Section 3.3. Then a stack, queue, mixed or track-layout ofT is determined,
as described in Section 3.2. Then in Section 3.4 we describe how to transform a given layout ofT into
the desired layout ofD. This process is then carried out for queue, stack, mixed, and track layouts in
Sections 3.5–3.8.

3.2 Layouts of Trees

Let T be a rooted tree. The vertices ofT are callednodes, and we assume that the edges are oriented
away from the root noder. This will be the case for the remainder of this paper. A node inT with no
outgoing edge is aleaf in T . As is standard, when referring to the edge of a directed graph,xy means an
edge oriented fromx to y. Thedepthof a nodex ∈ V (T ) is the distance fromr to x in T , and is denoted
by depth(x). Theheightof T is the maximum depth of a node inT . Let deg(x), deg−(x), and deg+(x)
denote the degree, indegree, and outdegree of each nodex ∈ V (T ). We denote byρ(x) the parent node
of each non-root nodex ∈ V (T ). A vertex orderingσ of T is breadth-firstif for all nodesx, y ∈ V (T ),
x <σ y whenever depth(x) < depth(y), or depth(x) = depth(y) andρ(x) <σ ρ(y).

Lemma 15. [57]A breadth-first vertex ordering of a treeT admits a1-queue layout ofT .

Proof: Since the depths of adjacent nodes differ by exactly one, and the nodes are ordered by non-
decreasing depth, the endpoints of a nested pair of edges must be at consecutive depths. By construction,
such a pair of edges are not nested, as illustrated in Figure 4. 2

depth 0 depth 1 depth 2 depth 3

Fig. 4: 1-queue layout of a complete binary tree.

A depth-firstvertex orderingσ of a rooted treeT is defined recursively as follows. Letr be the root
node ofT with child nodesx1, x2, . . . , xd. Let Ti be the subtree rooted atxi, 1 ≤ i ≤ d. Thenσ is
defined byσ(T ) = (r, σ(T1), σ(T2), . . . , σ(Td)).

Lemma 16. [16]A depth-first vertex orderingσ of a treeT admits a1-stack layout ofT .
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Proof: For the sake of contradiction, suppose that a pair of edgesvw andxy cross inσ. Without loss of
generalityv <σ x <σ w <σ y. Sincew is a child ofv andv <σ x <σ w, we have thatx (andy) are in
some subtreeTi rooted at a childvi of v. Sincex <σ w we haveV (Ti) <σ w. Sincey ∈ V (Ti), we have
y <σ w, which is the desired contradiction. Thus no two edges cross inσ, as illustrated in Figure 5. 2

Fig. 5: 1-stack layout of a complete binary tree.

The next lemma is the starting point for our results on mixed layouts in Section 3.7. An edge2-
colouring of a treeT with colours red and black isgood, if for each nodex ∈ V (T ) with an incoming red
edge, no other edge incident tox is red. A vertex ordering of a directed graph istopologicalif all edges
are directed from left to right.

Lemma 17. Let T be a rooted tree with a good edge2-colouring. ThenT has a topological vertex
ordering in which the red edges form a stack, and the black edges form a queue.

Proof: Let h be the height ofT . For each0 ≤ d ≤ h, let Vd be the set of nodes ofT at depthd.
For each1 ≤ d ≤ h, let Rd andBd denote the sets of nodes inVd with an incoming red and black
edge, respectively. Letσ be the vertex ordering(V0, R1, B1, R2, B2, . . . , Rh, Bh) of T , where for each
1 ≤ d ≤ h, the nodes inBd are ordered with respect to the order of their parents (inVd−1), and the nodes
in Rd are in reverse order to that of their parents (inVd−1). More precisely, for allv, w ∈ Bd we have
v <σ w wheneverρ(v) <σ ρ(w), and for allv, w ∈ Rd we havev <σ w wheneverρ(w) <σ ρ(v).

Since the depths of adjacent nodes differ by exactly one, and the nodes are ordered by non-decreasing
depth, the endpoints of a nested pair of edges must be at consecutive depths. By construction, such a pair
of black edges are not nested. Hence the black edges form a queue.

Suppose, for the sake of contradiction, that the red edgesvw andpq cross. Without loss of generality
v <σ p <σ w <σ q. Then depth(v) ≤ depth(p) ≤ depth(w). Since depth(w) = depth(v) + 1,
either depth(p) = depth(v) or depth(p) = depth(v) + 1. First suppose that depth(p) = depth(v). Then
depth(q) = depth(w). Since bothq andw have incoming red edges,q <σ w by construction. This is a
contradiction. Now suppose that depth(p) = depth(v)+1. Then depth(p) = depth(w). Letd = depth(p).
Sincep has an outgoing red edgepq, the incoming edge atp is black, andp ∈ Bd. Now w ∈ Rd since
w has an incoming red edgevw. SinceRd <σ Bd, we havew <σ p, which is the desired contradiction.
Thus no two red edges cross, and hence the red edges form a stack. 2

The next result is implicit in the work of Felsneret al. [44].

Lemma 18. [44]Every rooted treeT has an(edge-monochromatic) track layout in which every edge has
span one.
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Proof: Let σ be a breadth-first vertex ordering ofT starting at the root. LetVd be the set of nodes at depth
d. It is easily seen that there are no X-crossings in the track layout{(Vd, σ) : d ≥ 0}. Clearly every edge
has span one, as illustrated in Figure 6. 2

V3

V2

V1

V0

Fig. 6: Track layout of a complete binary tree with every edge having span1.

3.3 (k, T )-Layouts
Lemma 19. Let T be the tree comprised of a root noder andd ≥ 1 leavesv1, v2, . . . , vd adjacent tor.
Suppose that the nodes ofT are labelled with non-negative integersl(r), l(v1), l(v2), . . . , l(vd). LetG be
a graph with ak-queue (respectively,k-stack) layout with vertex orderingσ, wherek ≤ l(r) + l(v1) +
l(v2) + · · ·+ l(vd). ThenG has a subdivisionD with zero or two division vertices per edge such thatD
has a(1, T )-layout in which the division vertices are mapped to the leaves ofT , and the original vertices
are mapped to the rootr and are ordered byσ. Furthermore, every nodex ∈ V (T ) has qx ≤ l(x)
(sx ≤ l(x)).

Proof: Sayσ = (v1, v2, . . . , vn). Let l be an integer such thatk− l ≤ l(v1) + l(v2) + · · ·+ l(vd). Let F
be the set of edges ofG in an arbitrary set ofl queues (stacks). Subdivide every edgee = vw ∈ E(G)\F
twice, and denote the resulting path by(v, ev, ew, w). This defines a subdivisionD of G with zero or two
division vertices per edge. For each vertexv ∈ V (G), let N+(v) = {ev : e ∈ E(G) \ F, v = Lσ(e)}
andN−(v) = {ev : e ∈ E(G) \ F, v = Rσ(e)}. Order the vertices ofN+(v) andN−(v) with respect
to the order of the neighbours ofv in σ as follows. In the case of a given queue layout, letπ be the vertex
ordering ofV (D) \ V (G) defined by

π =
(

N+(v1), N−(v2), N+(v2), N−(v3), N+(v3), . . . , N−(vn−1), N+(vn−1), N−(vn)
)

.

For a given stack layout, letπ be the vertex ordering ofV (D) \ V (G) defined by

π =
(←−−−−−

N+(v1),
←−−−−−
N−(v2),

←−−−−−
N+(v2),

←−−−−−
N−(v3),

←−−−−−
N+(v3), . . . ,

←−−−−−−−
N−(vn−1),

←−−−−−−−
N+(vn−1),

←−−−−−
N−(vn)

)
.

Partition the remainingk− l queues (stacks) ofG into setsA1, A2, . . . , Ad so that eachAi has at most
l(vi) queues (stacks). Create a(1, T )-layout ofD as follows. Map the original vertices ordered byσ to r.
By construction, the intrabag edgesF of D mapped tor form l queues (stacks) with respect toσ. Thus
qr ≤ l (sr ≤ l). For each edgevw ∈ E(G) \ F that is in a queue (stack) inAi, mapev andew to vi.
Order each bagTvi by π. Sinceπ is ordered primarily with respect toσ, there is no X-crossing in the
layout. That is, we have a(1, T )-layout of D. In this layout, the edgesevew of D are intrabag edges
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mapped to the leaves ofT . Consider each such edgeevew to be assigned to the same queue (stack) asvw
in the given layout ofG. Consider two edgese = vw andf = xy in E(G) \ F that have no common
endpoint. Sinceπ is ordered primarily with respect toσ, the edgesevew andfxfy nest/cross inπ if and
only if e andf nest/cross inσ. Now consider two edgese = vx andf = vy in E(G) \ F (that have a
common endpoint). In the case of queues,evex andfvfy are either crossing or disjoint. For stacks,evex

andfvfy are either nested or disjoint. Thus the queue (stack) assignment for intrabag edges is valid, and
qvi
≤ l(vi) (svi

≤ l(vi)) for each1 ≤ i ≤ d. 2

For the next result we will need the following construction. LetG be a graph with a(k1, T1)-layout
for some treeT1. Let x be a node ofT1, and suppose that the subgraphG[T1x ] has a subdivisionDx

whereDx has a(k2, T2)-layout, for some treeT2 such that all the original vertices ofDx are mapped to
the rootr of T2 ordered by<x. Let merge-at-x be a binary operation on the layouts(k2, T2) and(k1, T1)
defined as follows. First replace(Tx, <x) by (Tr, <r), and renamex to y. Deleter from T2 and make
its children point toy. Each nodez 6= y in the new treeT3 inherits(Tz, <z) from the node it originated
from. It follows from the definition that merging(k2, T2) and(k1, T2) atx results in a(k3, T3)-layout of
the subdivisionD of G wherek3 ≤ max{k1, k2} and whereqy = qr (sy = sr), and each nodez 6= y in
V (T3) hasqz (sz) equal to that of the node it originated from.

Lemma 20. Let T be a rooted tree of heighth. Suppose that each nodex ∈ V (T ) is labelled by a non-
negative integerl(v) such that

∑
v∈V (T ) l(v) ≥ k. LetG be ak-queue (respectively,k-stack) graph. Then

G has a subdivisionD with an even number of division vertices per edge, such thatD has a(1, T )-layout
in which every nodex ∈ V (T ) hasqx ≤ l(x) (sx ≤ l(x)). Every edge ofG has at most2h division
vertices inD, and if all the non-leaf nodes ofT are labelled0 and if all its leaves are at depthh, then
every edge ofG has exactly2h division vertices inD.

Proof: We proceed by induction onh. If h = 0 then the result follows trivially. Assume the result
holds for all trees with height less thanh, and letT be a tree of heighth rooted atr. Let T ′ be the
subtree ofT induced by the nodes at depth at mosth − 1. Define a labeling on the nodes ofT ′ as
follows. For each nodex ∈ V (T ′) at depthh− 1, let l′(x) = l(x) + l(x1) + l(x2) + · · ·+ l(xd) where
x1, x2, . . . , xd are the children ofx in T . For all remaining nodesx ∈ V (T ′), let l′(x) = l(x). Now∑

x∈V (T ′) l′(x) =
∑

x∈V (T ) l(x) ≥ k. Thus by induction,G has a subdivisionD′ with at most2(h− 1)
division vertices per edge, andD has a(1, T ′)-layout such thatqx ≤ l′(x) (sx ≤ l′(x)) for all nodes
x ∈ V (T ′). For each nodex ∈ V (T ) at depthh − 1, let T (x) denote the subtree ofT induced byx
and its children, and let each node ofT (x) inherit its label fromT . For every leaf nodex ∈ V (T ′) at
depthh − 1, apply Lemma 19 to thel′(x)-queue (stack) layout(D′[T ′

x], <x) and the labelled treeT (x).
Merging(-at-x) the resulting(1, T (x))-layout ofD′[T ′

x] with the(1, T ′)-layout ofD′ (for every leaf node
x) gives rise to the desired(1, T )-layout of a subdivisionD of G. Since only the intrabag edges in the leaf
nodes ofT ′ are subdivided and they are subdivided either zero or two times,D is a subdivision ofG with
an even number of division vertices per edge. Moreover,D has at most2h division vertices per edge. The
final claim of the lemma is immediate from the construction. Figure 7 illustrates the main concepts of the
proof. 2

For all integersd1, d2 > 0, a complete(d1, d2)-ary tree is a rooted tree in which all the leaves are at
the same depth, every non-leaf node at even depth has outdegreed1 and every non-leaf node at odd depth
has outdegreed2. If d1 = d2 = d then we speak of acompleted-ary tree. The following special case of
Lemma 20 will be useful.
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1

0

1 1

1

(a) (b)

(c)

(d)

Fig. 7: Illustration for Lemma 20. Given (a) a labelled treeT and (b) a4-stack layout ofG (that is also a4-queue
layout), the algorithm produces a(1, T )-layout of a subdivision ofG with (c) sx ≤ l(x) or (d)qx ≤ l(x).

We say a(k, T )-layout ofG is simpleif for every non-leaf nodex ∈ V (T ), the setTx is an independent
set ofG. Thus for simple layouts,qx = sx = 0 for all non-leaf nodes.

Lemma 21. Let T be a subdivision of the complete(d1, d2)-ary tree of heighth. Leth′ be the height of
T . Letα = (d1)dh/2e(d2)bh/2c. Then everyk-queue (respectively,k-stack) graphG has a subdivisionD
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with an even number of division vertices per edge, andD has a simple(1, T )-layout in whichqx ≤ dk/αe
(sx ≤ dk/αe)) for every nodex ∈ V (T ). Moreover, the number of division vertices per edge is at most
2h′, or exactly2h′ if all the leaves ofT are at depthh′.

Proof: Let l(x) = 0 for each non-leaf nodex ∈ V (T ). Let l(x) = dk/αe for each leaf nodex ∈ V (T ).
The number of leaves in the complete(d1, d2)-ary tree of heighth is α. Subdividing the edges of a tree
does not change the number of leaves. ThusT also hasα leaves. Therefore

∑
x∈V (T ) l(x) ≥ k. Since

the non-leaf nodes are labelled0, by Lemma 20,G has a subdivisionD with a (1, T )-layout such that
for each leaf nodex ∈ V (T ), qx ≤ l(x) = dk/αe (sx ≤ l(x) = dk/αe), and for each non-leaf node
x ∈ V (T ), qx ≤ l(x) = 0 (sx ≤ l(x) = 0). Thus the(1, T )-layout is simple. The claim about the
number of division vertices per edge follows immediately from Lemma 20. 2

3.4 (k, H)-Layout→ Layout of G

For a graphG with a (k,H)-layout, we now show how to convert a layout ofH into a layout ofG. First
consider a(k, T )-layout in whichT is a rooted directed tree. We will often define a2-colouring of the
edges ofT using colours red and black. The edges ofG mapped to red edges ofT will be associated
with stacks, and those mapped to black edges ofT will be associated with queues. LetEr(T ) andEb(T )
denote the sets of red and black edges ofT .

Lemma 22. Let G be a graph with a(k, T )-layout for some rooted treeT . Suppose that each edge and
node ofT is coloured red or black such thatT has a topological vertex orderingσ where the red edges
form a stack and the black edges form a queue. For each nodex ∈ V (T ), let s′x = sx if x is red, and
s′x = 0 if x is black. Similarly, letq′x = qx if x is black, andq′x = 0 if x is red. Let

λs = max
x∈V (T )

s′x +
∑

xy∈Er(T )

kxy +
∑

yx∈Er(T )

kyx

 ,

and

λq = max
x∈V (T )

q′x + max
y∈V (T ) : y≤σx

∑
yz∈Eb(T ) : x≤σz

kyz

 .

ThenG has anλs-stackλq-queue mixed layout, such that the edges ofG that are mapped to red nodes or
edges ofT are in stacks, and the edges ofG that are mapped to black nodes or edges ofT are in queues.

To prove Lemma 22 we need the following lemma due to Heath and Rosenberg [57]. (See our compan-
ion paper [29] for a simple proof.) Letσ be a vertex ordering of a graphG. A rainbow in σ is a matching
{viwi ∈ E(G) : 1 ≤ i ≤ k} such thatv1 <σ v2 <σ · · · <σ vk <σ wk <σ wk−1 <σ · · · <σ w1.

Lemma 23. [57]A vertex ordering of a graphG admits ak-queue layout ofG if and only if it has no
(k + 1)-edge rainbow.

Proof of Lemma 22: First we label the nodes ofT asforward or backward. Consider the nodes ofT in
the order of their appearance inσ. Label the root node as forward or backward arbitrarily. Now consider
a non-root nodex with incoming edgeyx. Sinceσ is topological,y has already been labelled. Ifyx is
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black then labelx with the same label as that given toy. If yx is red then labelx with the opposite label to
that given toy. Now create a vertex orderingπ of G by replacing each nodex in σ by Tx if x is forward,
and by

←−
Tx if x is backward. (Recall that

←−
Tx is the reverse ordering ofTx to that in the given (k, T )-layout.)

Let Er(G) andEb(G) denote the sets of edges ofG that are mapped to red edges/nodes and black
edges/nodes ofT , respectively. We first prove that there is an edgeλq-colouring ofEb(G) such that no
two monochromatic edges inEb(G) are nested inπ.

Let R be a rainbow inπ formed from the edges ofEb(G) and with the maximum number of edges.
Let the set of intrabag edges inR be denoted byRintra, and the set of interbag edges be denoted byRinter.
Then|R| = |Rintra| + |Rinter|. Suppose the left endpoint of the innermost edge ofR is mapped to node
x. Then the right endpoint of each edge inR is mapped to a nodez such thatx ≤σ z. Intrabag edges
mapped to distinct nodes ofT are not nested (and not crossing). Thus all the edges inRintra are mapped to
the same node ofT . Hence all the edges ofRintra (if any) are mapped tox. Thus|Rintra| ≤ q′x. At least one
of the endpoints of each edge inRinter is not mapped tox. Thus by the construction ofπ, such endpoints
appear inπ either before or after all the endpoints of the edges inRintra. Therefore the edges ofRintra are
all nested inside the innermost edge ofRinter. Since the black edges inT are not nested inσ, all the edges
of Rinter have an endpoint mapped to the same nodey ∈ T . Since the edges inRintra are nested inside the
edges ofRinter, y ≤σ x. Furthermore, sinceσ is a topological vertex-ordering ofT , each edge ofRinter

is mapped to some outgoing edge ofy. If two edges ofRinter are mapped to the same edge incident to
y, then by Lemma 1(b) they may be nested only if their edge colours in the(k, T )-layout are different.
Therefore,|Rinter| ≤

∑
z∈V (T ) : x≤σz kyz and thus|R| ≤ q′x +

∑
z∈V (T ) : x≤σz kyz. By considering all

choices ofx andy ≤σ x in V (T ), we conclude that a rainbow inπ formed by the edges ofEb(G) may
have at mostλq edges. By Lemma 23, the edges ofEb(G) can be coloured withλq colours such that no
two monochromatic edges are nested.

We now define an edgeλs-colouring ofEr(G). We then prove that no two monochromatic edges in
Er(G) cross. Consider the nodes ofT in the order of their appearance inσ. For each nodex, colour the
edges ofG that are mapped to the red edges incident tox as follows. Two interbag edges ofG that are
mapped to the same outgoing red edge ofx receive the same colour if and only if they belong to the same
colour classEi ∈ {E1, E2, . . . Ek} in the (k, T )-layout ofG. Two interbag edges ofG mapped to two
distinct red edges incident tox always receive distinct colours (regardless of whether they are incoming
or outgoing). Ifx is red, colour the intrabag edges mapped tox with distinct colours to those used on
the interbag edges mapped to the red edges incident tox, and so that<x admits ansx-stack layout of
G[Tx]. We now show thatλs colours suffices for such a colouring. If the incoming edgeyx of x is red
the edges ofG mapped toyx usekyx colours out ofλs colours, otherwise 0 out ofλs colours are used.
Thus we have eitherλs − kyx or λs colours available for colouring the edges ofG mapped tox and the
red outgoing edgesxy1, xy2, . . . , xyp incident tox. Clearly we can colour the edges ofG mapped to
xy1, xy2, . . . , xyp andx as described above withkxy1 + kxy2 + · · · + kxyp

+ s′x distinct colours. Thus
the number of colours used is at mostλs.

We now show that no two monochromatic edgese1, e2 ∈ Er(G) cross inπ. That is, monochromatic
edges inEr(G) can be in the same stack. From the description of the edge colouring, it is clear that if
eithere1 or e2 is an intrabag edge then the pair does not form a monochromatic crossing. Thus it suffices to
consider pairs of interbag edges. Since the red edges inT are not crossing inσ, the only pairs of interbag
edges that can create a monochromatic crossing are those with endpoints in the same bagTx. In that case,
if e1 ande2 are mapped to the same edge incident tox thene1 ande2 do not cross by Lemma 1(c). Ife1
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ande2 are mapped to two distinct edges incident tox thene1 ande2 are not monochromatic. 2

Lemma 24. Let H be a graph with at-track layout{Vi : 1 ≤ i ≤ t} such that each node in track
Vi, 1 ≤ i ≤ t, has at most one neighbour in each trackVj , 1 ≤ j ≤ i − 1. Let G be a graph with a
(k, H)-track layout. Let

p = max
x∈V (H)

max
1≤`≤t

∑
xy∈E(H) : track(y)=`

kxy. (4)

Then replacing each nodex in the t-track layout ofH by (Hx, <x) from the(k, H)-track layout ofG,
gives a(p, t)-track layout ofG.

Proof: Define an edge colouring ofG as follows. For each nodex of T in track Vi, and for each̀ ,
i < ` ≤ t, consider the set of edgesE` incident tox that have their other endpoint inV`. Colour the edges
of G that are mapped to the edges ofE` with p colours such that any two edgese1, e2 ∈ E(G) receive the
same colour if and only if they are mapped to the same edgexy ∈ E` and they belong to the same colour
class in the(k, H)-layout ofG. This is possible with at mostp colours by (4).

We now prove that there are no monochromatic X-crossings with this edgep-colouring. Consider two
monochromatic edgese1, e2 ∈ E(G). If e1 ande2 are mapped to the same edge ofH then by the above
colouring procedure and by the properties of the edge colouring in the(k, H)-track layout ofG, edgese1

ande2 do not form a monochromatic X-crossing. Ife1 ande2 are mapped to two edgesxy, zq ∈ E(H)
that have no endpoint in common, thene1 ande2 do not form a monochromatic X-crossing sincexy and
zq do not form a monochromatic X-crossing in thet-track layout ofH. Finally, if e1 ande2 are mapped
to two edgesxy, xz ∈ E(H) that share an endpointx, thene1 ande2 can only form a monochromatic
X-crossing if y and z are in the same trackV`. Sayx ∈ Vi. Sincex has at most one neighbour in
V1, V2, . . . , Vi−1, we have that̀ > i. Therefore, by the above colouring proceduree1 ande2 do not have
the same colour. 2

Lemma 25. Let d ≥ 1 be an integer. LetG be a graph with a simple(1, T0)-layout for some treeT0,
such that every leaf nodex hasqx ≤ c for somec ≥ 0, and every non-leaf nodex hasqx = 0 and
deg+(x) = d. Then there is a treeT , such that the subdivisionD obtained fromG by subdividing each
intrabag edge once has a(c + 1, T )-track layout in which every nodex ∈ V (T ) has∑

xy∈E(T )

kxy +
∑

yx∈E(T )

kyx ≤ max{d + 1, c + 2}, and
∑

xy∈E(T )

kxy ≤ max{d, c + 1} . (5)

Proof: For every leaf nodex ∈ V (T0), let Dx be the subdivision ofG[T0x] obtained by subdividing each
edge ofG[T0x] once. By the proof of Lemma 2,Dx has a(c + 1, T ∗)-track layout whereT ∗ is a single
edge comprised of a root node adjacent to one leaf, such that all the original vertices ofG[T0x] are mapped
to the root and are ordered by<x, and all the division vertices are mapped to the leaf node inT ∗. For each
leaf nodex ∈ V (T0), merge-at-x the(1, T0)-layout ofG and the(c + 1, T ∗)-track layout ofG[T0x]. In
the resulting(c + 1, T )-layout ofD there are no intrabag edges. Thus we have a(c + 1, T )-track layout,
whereT is the subdivision ofT0 with each leaf-edge ofT0 subdivided once. LetV` be the set of leaves in
T . Let E` be the set of edges ofT with an endpoint inV`. All the interbag edges ofD that are mapped
to the edges inE` are coloured with at mostc + 1 colours. All the interbag edges ofD that are mapped
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to the edges inE \ E` are coloured with one colour. Thus, each nodex ∈ V (T ) that has no neighbour in
V` satisfies (5). Each nodex ∈ V (T ) that has a neighbour inV` has degree at most2. Since the incoming
edgeyx of x haskyx ≤ 1 and its outgoing edgexv haskxv ≤ c + 1, x satisfies (5). Finally, each leaf
nodex haskyx ≤ c + 1 whereyx is the incoming edge ofx. Thusx satisfies (5). 2

3.5 Queue Layouts
Lemma 26. For every graphG, G′′ has queue-numberqn(G′′) ≤ 2d

√
qn(G)e.

Proof: Let d = d
√

qn(G)e. Let T be the completed-ary tree of height1; that is, thed-ary star. By
Lemma 21,G′′ has a simple(1, T )-layout in which the root noder has deg+(r) = d andqr = 0, and
every leaf nodex ∈ V (T ) hasqx ≤ dqn(G)/de ≤ d. Let all the edges and nodes ofT be coloured black.
Let σ be the vertex ordering ofT starting with the root, followed by the leaves. Defineλq as in Lemma 22.
That is,λq is the maximum, taken over all nodesx ∈ V (T ), of

qx + max
y∈V (T ) : y≤σx

∑
yz∈E(T ) : x≤σz

kyz . (6)

For leaf nodesx, (6) isd+d = 2 d. For the root noder, (6) is0+d = d. Thusλq = 2 d. By Lemma 22,
G′′ has a2 d-queue layout. 2

Theorem 4. For every integerd ≥ 2, every graphG has ad-queue subdivision with2dlogd qn(G)e + 1
division vertices per edge.

Proof: Let T0 be the completed-ary tree of heighth = dlogd qn(G)e. By Lemma 21 withd1 = d2 = d,
G has a subdivisionD0 with 2h division vertices per edge, such thatD0 has a simple(1, T0)-layout in
which every non-leaf nodex ∈ V (T0) hasqx = 0, and every leaf nodex ∈ V (T0) hasqx ≤ 1. Let D be
subdivision ofG obtained fromD0 by subdividing each intrabag edge (in the(1, T0)-layout ofD0) once.
ClearlyD has2dlogd qn(G)e + 1 division vertices per edge ofG. By Lemma 25 withc = 1 applied to
D0, there is a treeT such thatD has a(2, T )-track layout in which every nodex ∈ V (T ) has∑

xy∈E(T )

kxy ≤ max{d, 2} ≤ d . (7)

Let all the edges and nodes ofT be coloured black. By Lemma 15,T has a topological vertex ordering
σ that admits a1-queue layout. Defineλq as in Lemma 22. By (7) and since every nodex in T hasqx = 0,
we have

λq = max
x∈V (T )

qx + max
y∈V (T ) : y≤σx

∑
yz∈E(T ) : x≤σz

kyz

 ≤ max
x∈V (T )

 ∑
xv∈E(T )

kxv

 ≤ d . (8)

Therefore, by Lemma 22,D has ad-queue layout, as illustrated in Figure 8 ford = 2. 2

We now prove that the number of division vertices per edge in Theorem 4 is optimal up to a constant
factor.
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Fig. 8: A 2-queue subdivision of an8-queue graph.

Lemma 27. LetD be aq-queue subdivision of a graphG with at mostk division vertices per edge. Then
G has a( 1

2 (2q + 2)2k − 1)-queue layout.

Proof: Let qi = 1
2 (2q + 2)2

i − 1, andki = k/2i. We proceed by induction oni ≥ 0 with the hypothesis:
there exists a subdivisionDi of G with at mostki division vertices per edge, andDi has aqi-queue layout.
Consider the base case withi = 0. Let D0 = D. ThenD0 is a subdivision ofG with k0 = k division
vertices per edge, andD0 has aq0-queue layout, sinceq0 = q.

Suppose that there exists a subdivisionDi of G with at mostki division vertices per edge, andDi has
a qi-queue layout. By contracting every second division vertex on the path representing each edge ofG
in Di, we obtain a graphDi+1 such thatDi is a subdivision ofDi+1 with at most one division vertex per
edge, andDi+1 is a subdivision ofG with at mostki/2 division vertices per edge. By Lemma 11,Di+1 has
a2qi(qi+1)-queue layout. Nowki/2 = ki+1, and2qi(qi+1) ≤ 2(qi+1)2−1 = 1

2 (2q+2)2
i+1−1 = qi+1.

Thus the inductive hypothesis holds for alli.
With i∗ = blog2 kc + 1, we haveki∗ < 1. The only subdivision ofG with less than one division

vertex per edge isG itself. ThusG has aqi∗ -queue layout, andqi∗ = 1
2 (2q + 2)(2

blog2 kc+1) − 1 ≤
1
2 (2q + 2)(2

1+log2 k) − 1 ≤ 1
2 (2q + 2)2k − 1. 2

Theorem 5. Let D be ad-queue subdivision of a graphG for somed ≥ 2. Then there is an edge ofG
with at least16 logd qn(G) division vertices inD.

Proof: Let k be the maximum number of division vertices inD in a single edge ofG. By Lemma 27,G
has( 1

2 (2d + 2)2k − 1)-queue layout. Thusqn(G) ≤ 1
2 (2d + 2)2k − 1, andqn(G) ≤ 1

2 (3d)2k − 1 since
d ≥ 2. That is,k ≥ 1

2 log3d 2(qn(G) + 1) = 1
2 (log3d d)(logd 2(qn(G) + 1)) ≥ 1

6 logd 2(qn(G) + 1)
sinced ≥ 2. Thereforek ≥ 1

6 logd qn(G), as claimed. Note thatlog3d d → 1 for larged, and the lower
bound onk tends to1

2 logd 2(qn(G) + 1). 2

3.5.1 Queue Layouts and Graph Embeddings
An embeddingof a graphG into a connected ‘host’ graphH is an injectionφ : V (G) → V (H). The
dilation of an edgevw ∈ E(G) is the distance betweenφ(v) andφ(w) in H. Thedilation of φ is the
maximum dilation of an edge ofG. For each edgevw ∈ E(G), fix a path of minimum length fromφ(v) to
φ(w) in H, called thevw-pathof φ. Let X be the set of vertices ofH that are internal on somevw-path.
Thedegreeof φ is the maximum degree of a vertex inX. Of course, the degree ofφ is no more than the
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maximum degree ofH. For example, letH be a subdivision of a graphG with at mostk division vertices
per edge. Then there is an obvious embedding ofG into H with dilation k + 1 and degree2. Thus the
following result provides a generalisation of Lemma 27.

Theorem 6. If a graphG has an embeddingφ into a k-queue graphH with dilation d and degree∆,
thenG has queue-number

qn(G) ≤
2k(∆ + 1)

(
(2k(∆ + 1))d − 1

)
2k(∆ + 1)− 1

− k(2∆ + 1) .

Moreover, for every∆ ≥ 3 and evend ≥ 2, there exists a graphG, a 1-queue graphH, and an embedding
of G into H with dilationd, degree∆, and

qn(G) ≥ ∆((∆− 1)d/2 − 1)
2(∆− 2)

.

Proof: Let X be the set of vertices ofH that are internal on somevw-path ofφ. Let D be a copy ofH.
Let X ′ be the set of vertices ofD that are not internal on everyvw-path ofφ. Now subdivide every edge
of D that is incident to a vertexx ∈ X ′, and then deletex from D. Clearly the maximum degree ofD
is ∆. By Vizing’s Theorem [92],D has a proper edge colouring with∆ + 1 colours. Using the obvious
bijection between edges ofH andD, let col(xy) denote the colour assigned to each edgexy of H. Let σ
be the vertex ordering in ak-queue layout ofH. Let queue(xy) denote the queue containing each edge
xy of H.

Orient each edgevw of G from v to w, whereφ(v) <σ φ(w). For each oriented edgevw of G, fix a
pathP (vw) from φ(v) to φ(w) in H consisting of at mostd edges. SupposeP (vw) = x0, x1, . . . , x`,
whereφ(v) = x0, φ(w) = x`, and` ≤ d. For each1 ≤ i ≤ `, let dir(xi−1xi) be ‘+’ if xi−1 <σ xi,
and ‘-’ otherwise. If̀ = 1 then letqueue(vw) = queue(x0x1); otherwise letqueue(vw) be the vector of
triples

queue(vw) =
[(

queue(xi−1xi), col(xi−1xi), dir(xi−1xi)
)

: 1 ≤ i ≤ `
]

.

We claim that this is a valid queue-assignment forG using the vertex orderingσ restricted to{φ(v) :
v ∈ V (G)}. Suppose thatqueue(vw) = queue(pq) for distinct edgesvw andpq of G. Then|P (vw)| =
|P (pq)|. Let P (vw) = x0, x1, . . . , x` and P (pq) = y0, y1, . . . , y`. If ` = 1 then queue(x0x1) =
queue(y0y1), and thusvw andpq are not nested. Now assume` ≥ 2.

We havecol(xi−1xi) = col(yi−1yi) for all 1 ≤ i ≤ `. For each1 ≤ i ≤ ` − 1, xi andyi are
internal vertices onP (vw) andP (pq) respectively, and thusxi ∈ X andyi ∈ X. Edges ofH incident
to a common vertex inX are coloured differently. Thusxi 6= yi for all 1 ≤ i ≤ ` − 1. Without loss
of generalityx0 <σ y0, or x0 = y0 andx1 <σ y1. Sincequeue(vw) = queue(pq), we have that
dir(x0x1) = dir(y0y1), andx0x1 andy0y1 are not nested.

First suppose thatdir(x0x1) is ‘+’. Then x0 <σ x1 andy0 <σ y1. Sincex1 6= y1, and sincex0x1 and
y0y1 are not nested, eitherx0 <σ x1 <σ y0 <σ y1 or x0 ≤σ y0 <σ x1 <σ y1. In both cases,x1 <σ y1.
Now suppose thatdir(x0x1) is ‘-’. Then x1 <σ x0 andy1 <σ y0. Sincex1 6= y1, and sincex0x1 and
y0y1 are not nested, eitherx1 <σ x0 <σ y1 <σ y0 or x1 <σ y1 <σ x0 ≤σ y0. In both cases,x1 <σ y1.

Thus by induction, for all1 ≤ i ≤ `, we have thatxi <σ yi (or x` = y`). Thusx` ≤σ y`. Thus inG
we havev ≤σ p andw ≤σ q. That is,vw andpq are not nested. Thus we have a valid queue-assignment
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for G. The number of queues is

k +
d∑

`=2

(2k(∆ + 1))` = k +
2k(∆ + 1)

(
(2k(∆ + 1))d − 1

)
2k(∆ + 1)− 1

− 2k(∆ + 1)

=
2k(∆ + 1)

(
(2k(∆ + 1))d − 1

)
2k(∆ + 1)− 1

− k(2∆ + 1) .

Now for the lower bound. LetT∆,h be the tree of heighth ≥ 1 in which every non-leaf node has degree
∆ ≥ 3, and every leaf node is at heighth. Let n be the number of nodes inT∆,h. Then

n = 1 + ∆
h−1∑
i=0

(∆− 1)i = 1 + ∆
(

(∆− 1)h − 1
∆− 2

)
=

∆(∆− 1)h − 2
∆− 2

.

By Lemma 15,qn(T∆,h) = 1. Any embedding ofG = Kn into T∆,h has dilationd = 2h and degree∆.
Sinceqn(Kn) = bn

2 c, we have

qn(G) ≥ n− 1
2

=
∆(∆− 1)h −∆

2(∆− 2)
=

∆((∆− 1)d/2 − 1)
2(∆− 2)

. 2

Theorem 6 implies that to prove that a family of graphsF has bounded queue-number, it suffices to
demonstrate that every graph inF has a bounded-dilation embedding into a graph with bounded degree
and bounded queue-number.

We have the following example of Theorem 6, which will be of particular interest if Open Problem 4 is
solved in the affirmative. Adrawingof a graphG represents the vertices by distinct points in the plane,
and represents each edge by a simple Jordan curve between its endpoints. The only vertices that an edge
may intersect are its own endpoints. At most two edges may cross at a single point, edges only cross
properly, and no two edges may overlap.

Corollary 1. Suppose that every planar graph has ak-queue layout. LetG be a graph admitting a
drawing in the plane with each edge involved in at mostc crossings. ThenG has queue-number at most

qn(G) ≤
10k

(
(10k)c+1 − 1

)
10k − 1

− 11k .

Proof: Let H be the plane graph obtained from the drawing ofG by replacing each crossing point by
a vertex. ThusG has an embedding intoH with dilation c + 1 and degree4. By assumption,H has a
k-queue layout. The result follows from Theorem 6 with∆ = 4 andd = c + 1. 2

3.6 Stack Layouts
Theorem 7. For every integers ≥ 3, every graphG has ans-stack subdivision with2dlogs−1 sn(G)e−2
division vertices per edge.

Proof: Let d = s − 1 andk = sn(G). Apply Lemma 21 withT the completed-ary tree of height
h = dlogd ke−1. Thenα = dbh/2c+dh/2e = dh ≥ d(logd k)−1 = k/d. By Lemma 21,G has a subdivision
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D with 2h division vertices per edge, such thatD has a simple(1, T )-layout in which every non-leaf node
x ∈ V (T ) has deg+(x) = d andsx = 0, and every leaf nodex ∈ V (T ) hassx ≤ dk/αe ≤ d. Let all
the edges and nodes ofT be coloured red. Defineλs as in Lemma 22. That is,λs is the maximum, taken
over all nodesx ∈ V (T ), of

sx +
∑

xy∈E(T )

kxy +
∑

yx∈E(T )

kyx . (9)

For leaf nodesx, (9) is at mostd+0+1 = s. For non-leaf nodesx, (9) is0+d+1 = s. Thusλs = s. By
Lemma 16,T has a topological ordering that admits a1-stack layout, and by Lemma 22,D has as-stack
layout. The stack layout ofD is illustrated in Figure 9 fors = 3. 2

Fig. 9: 3-stack subdivision of a16-stack graph.

Theorem 8. The following are equivalent:

(1) queue-number is bounded by stack-number,

(2) bipartite3-stack graphs have bounded queue-number,

(3) bipartite3-stack graphs have bounded2-track thickness.

Moreover, if queue-number is bounded by stack-number then queue-number is bounded by a polynomial
function of stack-number.

Proof: That (1) implies (2) is immediate. Theorem 2 proves that (2) and (3) are equivalent. It remains
to prove that (2) implies (1). Suppose that every bipartite3-stack graph has queue-number at most some
constantq. Consider an arbitrary graphG. By Lemma 13,G′ has a(sn(G) + 1)-stack layout. Thus, by
Theorem 7,G′ has a3-stack subdivisionD with 2dlog2(sn(G)+1)e−2 division vertices per edge. That is,
G has a3-stack subdivision with2(2dlog2(sn(G)+1)e−2)+1 = 4dlog2(sn(G)+1)e−3 division vertices
per edge. Since every edge ofG is subdivided an odd number of times,D is bipartite. By assumption,D
has queue-number at mostq. By Lemma 27,G has queue-number at most1

2 (2q+2)8dlog2(sn(G)+1)e−6−1.
Sinceq is constant, queue-number is bounded by a polynomial function of stack-number. 2

Theorem 9. For every integers ≥ 3, every graphG has ans-stack subdivision with1+2dlogs−1 qn(G)e
division vertices per edge.
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Proof: Let d = s − 1. Apply Lemma 21 withT0 the completed-ary tree of heighth = dlogd qn(G)e.
ThenG has a subdivisionD0 with 2dlogd qn(G)e division vertices per edge such thatD0 has a simple
(1, T0)-layout in which every non-leaf nodex ∈ V (T ) hassx = 0, and every leaf node hasx ∈ V (T )
hasqx ≤ 1. Let D be the subdivision ofG obtained by subdividing each intrabag edge ofD0 once. Thus
D has1 + 2dlogs−1 qn(G)e division vertices per edge ofG. By Lemma 25 withc = 1, there exists a tree
T such thatD has a(2, T )-track layout, where

max
x∈V (T )

 ∑
xy∈E(T )

kxy +
∑

yx∈E(T )

kyx

 ≤ max{d + 1, 3} ≤ d + 1 . (10)

Colour all the edges and nodes ofT red. Defineλs as in Lemma 22. That is,λs is the maximum, taken
over all nodesx ∈ V (T ), of

sx +
∑

xy∈E(T )

kxy +
∑

yx∈E(T )

kyx . (11)

Since every nodex ∈ V (T ) hassx = 0, (11) is at mostd + 1 by (10). Thusλs ≤ d + 1 = s. By
Lemma 16,T has a1-stack layout, and by Lemma 22,D has as-stack layout. 2

Theorem 9 has the following implication for Open Problem 1.

Theorem 10. If Conjecture 1 is true then stack-number is bounded by queue-number.

Proof: Conjecture 1 states that there exists a functionf , such that for every graphG and everys-stack
subdivisionH of G with at most one division vertex per edge, we havesn(G) ≤ f(s). Thus there exists
a functionf∗ such that for anys-stack subdivision of a graphG with k division vertices per edge,G has
af∗(s, k)-stack layout. By Theorem 9, every graphG has a3-stack subdivision with1 + 2dlog2 qn(G)e
division vertices per edge. Thussn(G) ≤ f∗(3, 1 + 2dlog qn(G)e), and stack-number is bounded by
queue-number. 2

3.7 Mixed Layouts

Theorem 11. For all integerss ≥ 1 andq ≥ 1, every graphG has ans-stackq-queue subdivision with
4dlog(s+q) q sn(G)e division vertices per edge.

Proof: Apply Lemma 21 withd1 = s + q, d2 = q, h = 2dlog(s+q)q sn(G)e, andT a complete(d1, d2)-
ary tree of heighth. ThenG has a subdivisionD with 4dlog(s+q) q sn(G)e division vertices per edge, and
D has a simple(1, T )-layout wheremaxx∈V (T ){sx} ≤ 1 and where every nodev ∈ V (T ) at even depth
has deg+(v) ≤ s + q and every nodev ∈ V (T ) at odd depth has deg+(v) ≤ q. Colour the edges ofT
as follows. For each non-leaf nodev ∈ V (T ) at even depth, colour its outgoing edges red or black so
that at mosts outgoing edges are red and at mostq are black. For nodesv ∈ V (T ) at odd depth, colour
the outgoing edges ofv black. Clearly this edge colouring is good. By Lemma 17,T has a topological
ordering that admits a1-queue layout ofT [Eb] and a1-stack layout ofT [Er].

Colour all the vertices ofT red. Consequently, every nodex in T hasq′x = 0. (See Lemma 22 to recall
the definitions ofq′x ands′x.) For each nodex ∈ V (T ), let deg+black(x) denote the outdegree ofx in T [Eb].
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Defineλs andλq as in Lemma 22. Then

λq = max
x∈V (T )

q′x + max
y∈V (T ) : y≤σx

∑
yz∈Eb(T ) : x≤σz

kyz


≤ max

x∈V (T )

 ∑
xv∈Eb(T )

kxv


≤ max

x∈V (T )
deg+black(x)

≤ q .

By the properties of the simple(1, T )-layout ofD every non-leaf nodex of T hass′x = 0 and every
leaf nodex of T hass′x ≤ 1. For a nodex in T , let degred(x) denote the degree ofx in T [Er]. Sinceh is
even, the height ofT is even and thus all the edges incident to leaves ofT are black. For every leaf node
x ∈ V (T ) that implies that degred(x) = 0. Therefore,

λs = max
x∈V (T )

s′x +
∑

xy∈Er(T )

kxy +
∑

yx∈Er(T )

kyx


≤ max

{
max

x∈V (T ) : deg(x)=1
s′x , max

x∈V (T ) : deg(x) 6=1
degred(x)

}
≤ s .

By Lemma 22, the subdivisionD of G has ans-stackq-queue mixed layout. 2

Theorem 12. For all s ≥ 1 and q ≥ 1, every graphG has ans-stackq-queue subdivision with2 +
4dlog(s+q) q qn(G)e division vertices per edge.

Proof: Apply Lemma 21 withd1 = s + q, d2 = q, h = 2dlog(s+q)q qn(G)e, andT a tree obtained from
a complete(d1, d2)-ary tree of heighth by subdividing each leaf-edge once. The height ofT is h + 1 and
all of its leaves are at depthh + 1. ThenG has a subdivisionD with 2 + 4dlog(s+q) q qn(G)e division
vertices per edge, andD has a simple(1, T )-layout in which every non-leaf nodex ∈ V (T ) hasqx = 0,
and every leaf nodex ∈ V (T ) hasqx ≤ 1.

Colour the edges ofT as follows. For each nodex ∈ V (T ) at odd depth, colour all its outgoing edges
black. For each nodex ∈ V (T ) at even depth, if depth(x) < h colour each of its outgoing edges red
or black such thats are red andq are black, otherwise, depth(x) = h, colour its only outgoing edge red.
Clearly this edge colouring ofT is good. Thus by Lemma 17,T has a topological vertex ordering, such
that the black edges form a queue, and the red edges form a stack.

Colour all the vertices ofT black. Consequently, every nodex ∈ V (T ) hass′x = 0. (See Lemma 22
to recall the definitions ofq′x ands′x). For each nodex ∈ V (T ), let degred(x) denote the degree ofx in
T [Er]. Defineλs andλq as in Lemma 22. Then

λs = max
x∈V (T )

s′x +
∑

xy∈Er(T )

kxy +
∑

yx∈Er(T )

kyx

 ≤ max
x∈V (T )

{degred(x)} ≤ s .
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By the properties of the simple(1, T )-layout ofD every non-leaf nodex of T hasq′x = 0 and every
leaf nodex of T hasq′x ≤ 1. By construction, the edges incident to leaves ofT are red. Thus every leaf
nodex ∈ V (T ) has degree zero inT [Eb]. Now λq is the maximum, taken over all nodesx ∈ V (T ), of

q′x + max
y∈V (T ) : y≤σx

∑
yz∈Eb(T ) : x≤σz

kyz . (12)

Since nodes ofT appear inσ according to nondecreasing depth, for each nodex ∈ V (T ) at depthi,
the summation in (12) may be nonzero only for nodesy ∈ V (T ) at depthi− 1 andi. Since the nodes at
depthh andh + 1 have outdegrees zero inT [Eb], for leaf nodesx, (12) is1 + 0 = 1. Since the nodes
at depth less thanh have outdegreesq in T [Eb], for non-leaf nodesx, (12) is0 + max{q, 0} = q. Since
q ≥ 1, by Lemma 22, the subdivisionD of G has ans-stackq-queue mixed layout. 2

Theorems 11 and 12 withs = 1 andq = 1 imply the following.

Theorem 13. Every graphG has a1-stack1-queue subdivision with

min{4dlog2 sn(G)e, 2 + 4dlog2 qn(G)e}

division vertices per edge. 2

Corollary 2. LetG be a graph family with bounded stack-number and/or bounded queue-number. Then
every graph inG has a1-stack1-queue subdivision with a bounded number of division vertices per
edge. 2

Since the stack-number of a proper minor-closed graph family is bounded [6, 8], Corollary 2 implies
that every graph from such a family has a1-stack1-queue subdivision with a bounded number of division
vertices per edge.

3.8 Track Layouts
In this section we consider layouts of subdivisions on few tracks. We will need the following lemma for
wrapping a track layout from our companion paper [28].

Lemma 28. [28]Let {Vi,j : i ≥ 0, 1 ≤ j ≤ bi} be a(k, t)-track layout of a graphG with maximum
partial spans (for some irrelevant valuet). For each0 ≤ α ≤ s, let tα = max{bi : i ≡ α (mod s+1)}.
For each0 ≤ α ≤ 2s, let t′α = max{bi : i ≡ α (mod 2s + 1)}. Then

(a) tn2k(G) ≤
s∑

α=0

tα , and (b) tnk(G) ≤
2s∑

α=0

t′α .

The special case of Lemma 28 withbi = 1 (for all i ≥ 0) will be useful.

Lemma 29. [28]Let G be a(k, t)-track graph with maximum spans. Then(a) tn2k(G) ≤ s + 1, and
(b) tnk(G) ≤ 2s + 1.

First we consider layouts of subdivisions on two tracks.

Lemma 30. For every graphG, the subdivisionG′′′ has 2-track thicknessθ2(G′′′) ≤ 1 + 2d
√

qn(G)e.
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Proof: Let d = d
√

qn(G)e. Let T0 be the completed-ary tree of height1; that is, thed-ary star. By
Lemma 21,G′′ has a simple(1, T0)-layout in which the root noder has deg+(r) = d andqr = 0, and
every leaf nodex ∈ V (T0) hasqx ≤ dqn(G)/de ≤ d. Let T be the tree obtained by subdividing each
edge ofT0. Let r be the root node ofT . By Lemma 25 withc = d, the subdivisionG′′′ has a(d + 1, T )-
track layout in whichkrx = 1 for every edgerx incident to the root, andkxy = d + 1 for every leaf-edge
xy. Consider the(2, 2)-track layout ofT with the root preceding the leaf nodes on the first track, and the
remaining nodes on the second track. Replace each nodex of T by Tx. We obtain a(2d + 1, 2)-track
layout ofG′′′. 2

Theorem 14. For every integerd ≥ 2, every graphG has a(d + 1, 2)-track subdivisionD with

4dlogd qn(G)e+ 3

division vertices per edge. That is,D has2-track thicknessθ2(D) ≤ d + 1.

Proof: By Theorem 4,G has ad-queue subdivisionD0 with 2dlogd qn(G)e + 1 division vertices per
edge. By Lemma 2,D = D′

0 has a(d + 1, 2)-track layout. 2

Now we consider3-track layouts of subdivisions.

Theorem 15. For every integerd ≥ 2, every graphG has a(d, 3)-track subdivision with1+2dlogd qn(G)e
division vertices per edge.

Proof: Let T0 be the completed-ary tree of heighth = dlogd qn(G)e. By Lemma 21,G has a subdivision
D0 with 2dlogd qn(G)e division vertices per edge such thatD0 has a simple(1, T0)-layout in which every
non-leaf nodex ∈ V (T0) has deg+(x) = d andqx = 0, and every leaf nodex ∈ V (T0) hasqx ≤ 1. By
Lemma 25 withc = 1, there is a treeT , such that the subdivisionD = D′

0 obtained by subdividing each
intrabag edge ofD0 once has a(2, T )-track layout in which every nodex ∈ V (T ) has

∑
xy∈E(T ) kxy ≤ d

and deg+(x) ≤ d. Consider the (edge-monochromatic) track layout ofT produced by Lemma 18. By
Lemma 24 withp = d, for somet, D has a(d, t)-track layout with every edge having span one, as
illustrated in Figure 10 ford = 2. By Lemma 29(b) withs = 1 andk = d, D has a(d, 3)-track layout.2

Finally we consider layouts of subdivisions on four or more tracks, and with no X-crossings.

Theorem 16. For every integerd ≥ 2, every graphG has a bipartite(d + 2)-track subdivision with at
most8dlogd qn(G)e+ 1 division vertices per edge.

Proof: Let T0 be the completed-ary tree of heighth = dlogd qn(G)e. Let T be the subdivision ofT0

obtained as follows. For each nodex ∈ V (T0) at depth at mosth − 2, subdivide its rightmost outgoing
edge twice, and subdivide the remainingd − 1 outgoing edges three times. For each non-leaf node
x ∈ V (T0) that is incident to a leaf-edge, subdivide its rightmost outgoing edge once, and subdivide the
remainingd− 1 outgoing edges twice. The resulting treeT has heighth + 3h− 1 = 4dlogd qn(G)e − 1.
By Lemma 21,G has a subdivisionD0 with at most8dlogd qn(G)e − 2 division vertices per edge and a
simple(1, T )-layout, such that every non-leaf nodex ∈ V (T ) hasqx = 0, and every leaf nodex ∈ V (T )
hasqx ≤ 1. Moreover, every edge ofG has an even number of division vertices inD.

Let H the graph obtained fromT by adding a4-cycle (x, ax, bx, cx) to each leaf nodex ∈ V (T ), as
illustrated in Figure 11. Now subdivide every intrabag edgevw of D0 three times. We obtain a subdivision
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4-queue
layout of K8

queue 1 queue 2 queue 3 queue 4

Fig. 10: Track layout of a subdivision ofK8 before wrapping.

D of G in which every edge ofG has an odd number of division vertices inD. ThusD is bipartite, and
has at most8dlogd qn(G)e+ 1 division vertices per edge.

Create a(1,H)-layout ofD from the simple(1, T )-layout ofD0 as follows. For each intrabag edge
vw ∈ E(D0) mapped to a leaf nodex ∈ E(T ) such thatv <x w in the(1, T )-layout, place the division
vertexavw incident tov in the bagHax

, place the middle division vertexbvw in the bagHbx
, and place

the division vertexcvw incident tow in the bagHcx
. Since the intrabag edges mapped tox in the(1, T )-

layout of D0 induce a1-queue layout, we can order the division vertices inHax
, Hbx

andHcx
by the

queue order of the edges they subdivide. As in Lemma 4(c), there is no X-crossing in the resulting layout.
Thus we have anH-track layout ofD.

Now create a track layout ofH indexed by

{(i, j) : 0 ≤ i ≤ 3h, 1 ≤ j ≤ d} ∪ {(3h + 1, 1)} .

Nodes are ordered in the obvious way so that there are no X-crossings, as illustrated in Figure 11.
Firstly, consider a nodex ∈ V (H) that corresponds to a node ofT0 at depthi ≤ h − 2 in T0. Recall

that the firstd− 1 outgoing edges ofx in T0 are subdivided three times, and the rightmost outgoing edge
in T0 is subdivided twice. Denote thed outgoing paths atx in H by

(x, α1, β1, γ1), (x, α2, β2, γ2), . . . , (x, αd−1, βd−1, γd−1), (x, βd, γd) .

Positionx in track(3i, 1). For each1 ≤ j ≤ d− 1, positionαj in track(3i, j + 1). For each1 ≤ j ≤ d,
positionβj in track(3i + 1, 1), and positionγj in track(3i + 2, 1).

Now consider a nodex ∈ V (H) that corresponds to a node ofT0 at depthh − 1 in T0. Recall that
the firstd − 1 outgoing edges ofx in T0 are subdivided twice, and the rightmost outgoing edge inT0 is
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(0, 1)→A1

(0, 2)→A2

(0, d)→Ad

(1, 1)→B
(2, 1)→C
(3, 1)→A1

(3, 2)→A2

(3, d)→Ad

(4, 1)→B
(5, 1)→C
(6, 1)→A1

�

�

�

(3h− 3, 1)→A1

(3h− 3, 2)→A2
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β1

γ1

αd−1

βd−1

γd−1

βd

γd

Fig. 11: Track layout ofH.

subdivided once. Denote thed outgoing paths atx in H by

(x, α1, β1), (x, α2, β2), . . . , (x, αd−1, βd−1), (x, βd) .

Positionx in track(3h− 3, 1). Position each nodeαj , 1 ≤ j ≤ d− 1, in track(3h− 3, j + 1). Position
each nodeβj , 1 ≤ j ≤ d, in track(3h− 2, 1).

Finally consider a nodex ∈ V (H) that corresponds to a leaf node ofT0 (at depthh in T0). Positionx
in track(3h− 1, 1), positionax in track(3h, 1), positionbx in track(3h + 1, 1), and positioncx in track
(3h, 2).

Now wrap the track layout ofH using Lemma 28(b) withk = 1. The partial spans = 1, so we are
wrapping modulo3 = 2s + 1. Observe that the track layout ofH is indexed by:{

(i, j) : i ≡ 0 (mod 3), 0 ≤ i ≤ 3h, 1 ≤ j ≤ d
}

∪
{
(i, 1) : i ≡ 1 (mod 3), 0 ≤ i ≤ 3h + 1

}
∪

{
(i, 1) : i ≡ 2 (mod 3) 0 ≤ i ≤ 3h

}
.

Thus in Lemma 28(b), we havet′0 = d, t′1 = 1, andt′2 = 1. ThusH has a(d + 2)-track layout. In
Figure 11 we indicate the new track assignment byA1, . . . , Ad, B, C, where for each0 ≤ i ≤ h, the
tracks(3i, j) are mappedAj , the track(3i + 1, 1) is mapped toB, and the track(3i + 2, 1) is mapped to
C. Note that fori = 3h we use the assumption thatd ≥ 2.

It is easily seen that in the(d + 2)-track layout ofH, every node has at most one neighbour on any
other track. Thus replacing each nodex in the track layout ofH by Hx, we obtain a(d + 2)-track layout
of D, as in Lemma 24. 2

Note that the bound on the number of division vertices per edge in Theorem 16 can be slightly improved,
at the expense ofD no longer being bipartite. We will needD to be bipartite in Section 5.

The following result proves that in each of Theorems 14, 15 and 16, the bound on the number of division
vertices per edge is within a constant factor of optimal for all graphs.



188 Vida Dujmovíc and David R. Wood

Theorem 17. In every(k, t)-track subdivisionD of a graphG there is an edge with at least
1
2 log2kt 2 qn(G) division vertices.

Proof: Let r be the maximum number of division vertices in an edge ofG in the subdivisionD. By
Lemma 5,D hask(t − 1)-queue layout. By Lemma 27,qn(G) ≤ 1

2 (2k(t − 1) + 2)2r − 1 ≤ 1
2 (2kt)2r.

Hence2 qn(G) ≤ (2kt)2r andr ≥ 1
2 log2kt 2 qn(G). 2

4 Planar Subdivisions
We have seen that every graph has a3-stack subdivision, a2-queue subdivision, a4-track subdivision, and
a subdivision with bipartite thickness at most3. It is interesting to consider which graphs haves-stack
subdivisions for each1 ≤ s ≤ 2; which graphs have1-queue subdivisions; which graphs havet-track
subdivisions for2 ≤ t ≤ 3; and which graphs have subdivisions with2-track thickness at mostt for
1 ≤ t ≤ 2. In this section we completely answer these questions. As the section title suggests, planar
graphs will play a leading role in the characterisations.

4.1 Planar Stack Layouts
Theorem 18. Every graph has a3-stack subdivision. A graph has a2-stack subdivision if and only if it
is planar. A graph has a1-stack subdivision if and only if it is outerplanar.

Proof: By Theorem 1 withd = 2 every graph has a3-stack subdivision. The2-stack graphs are pre-
cisely the subgraphs of planar Hamiltonian graphs [5]. Thus a non-planar graph does not have a2-stack
subdivision. Many authors [49, 66, 81] have observed that every planar graph has a subdivision that is
a subgraph of a planar Hamiltonian graph (see Lemma 31 below), and hence has a2-stack layout. The
1-stack graphs are precisely the outerplanar graphs [5]. Thus, for any outerplanar graph, the graph itself
is a1-stack subdivision. Conversely, if a subdivision of a graphG is outerplanar then so isG. Thus only
the outerplanar graphs have1-stack subdivisions. 2

We now consider how many division vertices per edge are needed in a2-stack subdivision of any planar
graph. Pach and Wenger [81] proved that the subdivision of a planar graph with two division vertices per
edge is the subgraph of a Hamiltonian planar graph, and hence has a2-stack layout. Kaufmann and Wiese
[66] and Giacomoet al. [49] improved this result by showing that the subdivisionG′ of a planar graph
G with one division vertex per edge is the subgraph of a Hamiltonian planar graph, and hence has a2-
stack layout. (Note that Pach and Wenger [81] were more interested in the total number of vertices in the
Hamiltonian supergraph rather than the number of division vertices per edge. Giacomoet al. [49] also
prove that the division vertexx of each edgevw is betweenv andw in the 2-stack layout.) Here we give
a new proof of the above result in [49, 66], with the additional property that the Hamiltonian supergraph
is bipartite.

Lemma 31. For every planar graphG, the subdivisionG′ of G with one division vertex per edge is the
subgraph of a bipartite Hamiltonian planar graph, and hence has a2-stack layout.

Proof: Without loss of generalityG is a triangulation. Otherwise we can add edges toG so that every face
is a3-cycle. LetV = V (G). Now subdivide every edge once. LetX be the set of these division vertices.
Finally add a single vertex to each face adjacent to the six vertices on that face. LetY be the set of these
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vertices. We obtain a planar triangulationH. Observe that{V,X, Y } is a vertex3-colouring ofH. Thus
every triangle ofH contains one vertex from each ofV , X andY . Every such triangle forms a face ofH.
Therefore every triangle inH is a face, andH has no separating triangles. SinceH is a triangulation, by
the classical result of Whitney [98],H has a Hamiltonian cycleC.

The subgraph ofH induced byV ∪ X is G′. ThusH andG′ are2-stack graphs. We now construct
a bipartite Hamiltonian planar graphW from H such thatG′ is a subgraph ofW . Consider a facef of
G′. Let x be the vertex adjacent to every vertex off in H. Exactly two edges incident tox are inC. Say
xv, xw ∈ C, wherev, w ∈ f . Delete all the edges incident tox exceptxv andxw. Clearly the resulting
graph remains Hamiltonian. In the case that the distance fromv to w along the boundary off is odd,
subdivide the edgexv. The resulting graphW is clearly Hamiltonian. It is easily verified that each face
of W is an even cycle. ThusW is bipartite. 2

4.2 Planar Queue and Track Layouts
Felsneret al. [44] asked the following question.

Open Problem 3. [44]Does everyn-vertex planar graph have a 3D straight-line drawing withO(n)
volume?

By Theorem 23 below, this question has an affirmative answer if planar graphs have bounded track-
number. Whether planar graphs have bounded track-number is an open problem due to Hubert de Frays-
seix [private communication, 2000], and since queue-number is tied to track-number [28], is equivalent
to the following open problem due to Heathet al. [56, 57].

Open Problem 4. [56, 57]Do planar graphs have bounded queue-number?

We make the following contribution to the study of this problem, which is analogous to Theorem 8 for
arbitrary graphs. Note that the best known upper bound on the queue-number of planar graphs isO(

√
n).

Theorem 19. LetF(n) be the family of functionsO(1) or O(polylog n). The following are equivalent:

(1) n-vertex planar graphs have queue-number inF(n),

(2) n-vertex bipartite Hamiltonian planar graphs have queue-number inF(n),

(3) n-vertex bipartite Hamiltonian planar graphs have2-track thickness inF(n).

Proof: That (1) implies (2) is immediate. Theorem 2 proves that (2) and (3) are equivalent. It remains
to prove that (3) implies (1). Suppose that everyn-vertex bipartite Hamiltonian planar graph has2-track
thickness at most some functionf(n) ∈ F(n). Let G be ann-vertex planar graph. By Lemma 31, there
is a bipartite Hamiltonian planar graphW containingG′ as a subgraph. Observe thatW hasn + (3n −
6) + 2(2n− 4) < 8n vertices. By assumption,W has2-track thicknessθ2(W ) ≤ f(8n), and sinceG′ is
a subgraph ofW , we haveθ2(G′) ≤ f(8n). By Lemma 3,G has queue-number at most
(f(8n))2 ∈ F(n). 2

We now answer the questions discussed at the start of this section in the case of queue and track layouts.

Lemma 32. Everyn-vertex planar graphG has a subdivisionD such that every edge has at mostn− 2
division vertices, andD admits ann-track layout with every edge having span one.
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Proof: By the classical result of F́ary [43] and Wagner [93],G has a straight-line plane drawing. Rotate
such a drawing so that every vertex has a uniqueY -coordinate. Drawn lines parallel to the X-axis, one
through each vertex, and subdivide every edge at the point at which it crosses a line. The subdivisionD
obtained has at mostn − 2 division vertices per edge. Now consider each line to be a track. Since there
are no crossings in the drawing, there are no X-crossings in the track assignment ofD. Thus we have an
n-track layout ofD with every edge having span one. 2

Theorem 20. Every graph has a2-queue subdivision. A graph has a1-queue subdivision if and only if it
is planar.

Proof: By Theorem 4 withd = 2 every graph has a2-queue subdivision. Since1-queue graphs are planar
[57], non-planar graphs do not have1-queue subdivisions. For any planar graphG, the subdivisionD
from Lemma 32 has a1-queue layout by Lemma 5. Note that this conclusion can also be reached by
observing thatD is arched levelled planar (see [57]). 2

Theorem 21. Every graph has a4-track subdivision. A graph has a3-track subdivision if and only if it
is planar. A graph has a2-track subdivision if and only if it is a forest of caterpillars.

Proof: By Theorem 16 withd = 2 every graph has a4-track subdivision. By Lemma 35 below, a3-track
graph is planar. Thus non-planar graphs do not have3-track subdivisions. For any planar graphG, the
subdivision ofG from Lemma 32 can be wrapped into a3-track layout by Lemma 29(b). It is easily seen
that a graph has a2-track layout if and only if it is a forest of caterpillars [54]. If a subdivision of a graph
G is a forest of caterpillars then so isG. Thus a graph has a2-track subdivision if and only if it is a forest
of caterpillars. 2

We expect that the bound on the number of division vertices per edge in Lemma 32 can be improved.

Open Problem 5. Is there a functionf such that every planar graphG has a subdivisionD with
f(qn(G)) division vertices per edge, andD has a1-queue layout and/or a3-track layout?

Theorem 22. Every graph has a subdivision with2-track thickness at most3. A graph has a subdivision
with 2-track thickness at most2 if and only if it is planar. A graph has a subdivision with2-track thickness
at most1 if and only if it is a forest of caterpillars.

Proof: The first claim is Theorem 14 withd = 2. If the 2-track thickness of a graphG is at most2, then
sn(G) ≤ 2 by Lemma 1(c), and thusG is planar [5]. Thus no non-planar graph has a subdivision with
2-track thickness at most2. By Lemma 32, every planar graph has a subdivisionD that admits an (edge-
monochromatic) track layout with every edge having span one. By Lemma 29(a), such a track layout can
be wrapped into a(2, 2)-track layout. That is,θ2(D) ≤ 2. This proves the second claim. A graph has
2-track thickness at most1 if and only if it is a forest of caterpillars [54]. If a subdivision ofG is a forest
of caterpillars then so isG. This proves the third claim. 2
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4.3 Planar Mixed Layouts
Since the stack-number of planar graphs is at most four [101], Theorem 13 implies that every planar graph
has a1-stack1-queue subdivision with eight division vertices per edge. Although asymptotically much
weaker than Theorem 11, the following result gives a better bound on the number of division vertices per
edge for graphs with small stack-number.

Lemma 33. For every integers ≥ 1, every graphG has as-stack1-queue subdivision with at most
dsn(G)/se division vertices.

Proof: Let k = dsn(G)/se. Let h = bk
2 c. Let T be the path on2h edges rooted at the ‘middle’ vertex

r. ThusT has heighth. Label each nodex ∈ V (T ) by l(x) = s. Then
∑

x l(x) = (2h + 1)s =
(2bk

2 c+ 1)s ≥ ks = dsn(G)/ses ≥ sn(G). By Lemma 20,G has a subdivisionD with at most2h ≤ k
division vertices per edge, andD has a(1, T )-layout such thatsx ≤ s for all nodesx ∈ V (T ).

Change the root ofT from r to one of the two leaves ofT and redirect the edges accordingly. Now
every node inT has at most one outgoing edge. Colour all the edges ofT black and all the nodes ofT
red. Since all the edges are black, by Lemma 17,T has a topological orderingσ that admits a1-queue
layout ofT . Furthermore, since there are no red edges inT ,

max
x∈V (T )

s′x +
∑

xy∈Er(T )

kxy +
∑

yx∈Er(T )

kyx

 ≤ s .

Since there are no black nodes and since every node has at most one black outgoing edge

max
x∈V (T )

q′x + max
y∈V (T ) : y≤σx

∑
yz∈Eb(T ) : x≤σz

kyz

 ≤ max
x∈V (T )

∑
xv∈Eb(T )

kxv ≤ 1 .

(See Lemma 22 to recall the definitions ofq′x ands′x). Therefore by Lemma 22,D has ans-stack
1-queue mixed layout. 2

By Lemma 33 withs = 1 and since planar graphs have4-stack layouts [101] we have:

Lemma 34. Every planar graph has a1-stack1-queue subdivision with four division vertices per edge.

This concludes the proof 2

Similar bounds can be be obtained for the number of division vertices per edge in a1-stack1-queue
subdivision of a graph with small stack-number (see [29]). Lemma 34 provides a partial solution to the
conjecture of Heath and Rosenberg [57] that every planar graph has a1-stack1-queue mixed layout.

5 Three-Dimensional Polyline Drawings
Track layouts have previously been used to produce three-dimensional drawings with small volume. The
principle idea in these constructions is to position the vertices in a single track so that they have the same
X- andY -coordinates. That is, each track is positioned on a vertical ‘rod’. Since there are no X-crossings
in the track layout, no edges between the same pair of tracks can cross.

Theorem 23. [27, 30]LetG be ac-colourablet-track graph. Then
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(a) G has aO(t)×O(t)×O(n) straight-line drawing withO(t2n) volume, and

(b) G has aO(c)×O(c2t)×O(c4n) straight-line drawing withO(c7tn) volume.

Moreover, ifG has anX × Y × Z straight-line drawing thenG has track-numbertn(G) ≤ 2XY .

The constants in Theorem 23 can be significantly improved in the case of3-track and4-track layouts.
Here the vertices are positioned on the edges of a triangular or rectangular prism. These models of graph
drawing were introduced by Felsneret al. [44].

Lemma 35. Let {V1, V2, V3} be a3-track layout of a graphG. Letn′ = max{|V1|, |V2|, |V3|}. ThenG
has a2×2×n′ straight-line drawing with the vertices on a triangular prism. In this case,G is necessarily
planar.

Proof: Position thei-th vertex inV1 at (0, 0, i). Position thei-th vertex inV2 at (1, 0, i). Position thei-th
vertex inV3 at (0, 1, i). Since there is no X-crossing in the track layout, no two edges cross. SinceG is
embedded in a surface homeomorphic to the sphere,G is planar. 2

Lemma 36. Let {V1, V2, V3, V4} be a4-track layout of a graphG. Letn′ = max{|V1|, |V2|, |V3|, |V4|}.
ThenG has a2× 2× 2n′ straight-line drawing with the vertices on a rectangular prism.

Proof: Position thei-th vertex inV1 at (0, 0, 2i). Position thei-th vertex inV2 at (1, 0, 2i). Position the
i-th vertex inV3 at (0, 1, 2i). Position thei-th vertex inV4 at (1, 1, 2i + 1). Clearly the only possible
crossing is between edgesvw andxy with v ∈ V1, w ∈ V4, x ∈ V2, andy ∈ V3. Such a crossing point is
on the lineL = {( 1

2 , 1
2 , z) : z ∈ R}. However,vw intersectsL at ( 1

2 , 1
2 , α + 1

2 ) for some integerα, and
xy intersectsL at ( 1

2 , 1
2 , β) for some integerβ. Thusvw andxy do not intersect. 2

Di Giacomo and Meijer [22] proved that a4-track graph withn vertices has a2×2×n drawing. When
n′ < n

2 the above construction has less volume.
In the case of bipartite graphs, the authors [30] gave a simple proof of Theorem 23(b) with improved

constants, which we include for completeness. The construction is illustrated in Figure 12.

Lemma 37. [30]Everyt-track bipartite graphG with bipartition {A,B} has a2 × t × max{|A|, |B|}
straight-line drawing.

Proof: Let {Ti : 1 ≤ i ≤ t} be at-track layout ofG. For each1 ≤ i ≤ t, let Ai = Ti ∩ A and
Bi = Ti ∩B. Order eachAi andBi as inTi. Place thej-th vertex inAi at (0, t− i + 1, j +

∑i−1
k=1 |Ak|).

Place thej-th vertex inBi at (1, i, j +
∑i−1

k=1 |Bk|). The drawing is thus2× t×max{|A|, |B|}. There is
no crossing between edges inG[Ai, Bj ] andG[Ai, Bj ] as otherwise there would be an X-crossing in the
track layout. Clearly there is no crossing between edges inG[Ai, Bj ] andG[Ai, Bk] for j 6= k. Suppose
there is a crossing between edges inG[Ai, Bj ] andG[Ak, B`] with i 6= k andj 6= `. Without loss of
generalityi < k. Then the projections of the edges in theXY -plane also cross, and thus` < j. This
implies that the projections of the edges in theXZ-plane do not cross, and thus the edges do not cross.2

We now prove results for 3D1-bend drawings.

Theorem 24. Everyc-colourableq-queue graphG with n vertices andm edges has a2 × c(q + 1) ×
(n + m) polyline drawing with one bend per edge. The volume is2c(q + 1)(n + m).
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Fig. 12: 3D straight-line drawing of a6-track bipartite graph.

Proof: The subdivisionG′ of G with one division vertex per edge is bipartite and hasn + m vertices.
By Lemma 4(b),tn(G′) ≤ c(q + 1). Thus by Lemma 37,G′ has a2× c(q + 1)× (n + m) straight-line
drawing, which is the desired 3D polyline drawing ofG. 2

The next result applies a construction of Calamoneri and Sterbini [13].

Theorem 25. Everyn-vertexm-edge graphG has ann × m × 2 polyline drawing with one bend per
edge.

Proof: Let (v1, v2, . . . , vn) be an arbitrary vertex ordering ofG. Let (x1, x2, . . . , xm) be an arbitrary
ordering of the division vertices ofG′. Place eachvi at (i, 0, 0) and eachxj at (0, j, 1). Clearly the
endpoints of any two disjoint edges ofG′ are not coplanar (see [13]). Thus no two edges cross, and we
have ann×m× 2 straight-line drawing ofG′, which is a 3D1-bend drawing ofG. 2

Subsequent to this research, Morin and Wood [75] studied 3D1-bend drawings. They showed that if the
vertices are required to be collinear, then the minimum volume of a 3D1-bend drawing of anyn-vertex
graph with cutwidthc is Θ(cn). Moreover, they proved that every graph has a 3D1-bend drawing with
O(n3/ log2 n) volume.

Now consider 3D2-bend drawings. For everyq-queue graphG, the subdivisionG′′ is obviously3-
colourable. Thus by Lemma 4(c) and Theorem 23(b),G has aO(1)×O(q)×O(n+m) polyline drawing
with two bends per edge. This result can be improved as follows.

Theorem 26. Everyn-vertexm-edgeq-queue graphG has a2 × 2q × (2n − 3) polyline drawing with
two bends per edge. The volume is at most8qn ∈ O(n

√
m).
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Proof: Let σ = (v1, v2, . . . , vn) be the vertex ordering in aq-queue layout ofG. Let {E` : 1 ≤ ` ≤ q}
be the queues. Order the edges in each queueE` according to the queue order (see Eq. (1)). Denote
by (L(e), X(e), Y (e), R(e)) the path replacinge in G′′, whereL(e) <σ R(e). Put each vertexvi at
(0, 0, i). If e is the j-th edge in the ordering ofE`, put the division verticesX(e) at (1, 2`, j) and
Y (e) at (1, 2` + 1, j). Observe that the projection of the drawing onto theXY -plane is planar. Thus
the only possible crossings occur between edges contained in a plane parallel with theZ-axis. Thus an
X-crossing could only occur between pairs of edges{L(e)X(e), L(f)X(f)}, {X(e)Y (e), X(f)Y (f)},
or {Y (e)R(e), Y (f)R(f)}, wheree andf are in a single queueE`. Supposee <` f . Then theZ-
coordinates satisfy:Z(L(e)) ≤ Z(L(f)), Z(R(e)) ≤ Z(R(f)), Z(X(e)) < Z(X(f)), andZ(Y (e)) <
Z(Y (f)). Thus there is no crossing. The drawing is at most2 × 2q × (2n − 3) since each queue has at
most2n− 3 edges [29, 57, 83]. The volume is at most8qn, which isO(n

√
m) [29, 57, 89]. 2

Heath and Rosenberg [57] observed that the complete graphKn has abn
2 c-queue layout. Thus Theo-

rem 26 gives a2 × n × (2n − 3) polyline drawing ofKn with two bends per edge. Independent of this
research, Dycket al. [32] also proved thatKn has a 3D2-bend drawing withO(n2) volume.

Theorem 27. LetG be aq-queue graph withn vertices andm edges. For everyε > 0, G has a

2×
(
dqεe+ 2

)
×

(
n + (8

⌈
1
ε

⌉
+ 1)m

)
polyline drawing with at most8d 1ε e + 1 bends per edge. The volume isO(qε(n + m

ε )). For constantε
there areO(1) bends per edge and the volume isO(qε(n + m)), which is inO(nε(n + m)).

Proof: Let d = dqεe. By Theorem 16,G has a bipartite subdivisionD with at most8dlogd qe+1 division
vertices per edge such that the track-numbertn(D) ≤ d + 2. Now logd q ≤ 1

ε . ThusD has at most
8d 1ε e + 1 division vertices per edge, andtn(D) ≤ dqεe + 2. The number of vertices ofD is at most
n + (8d 1ε e + 1)m. By Lemma 37,D has a2 × (dqεe + 2) × (n + (8d 1ε e + 1)m) straight-line drawing,
which is the desired 3D polyline drawing ofG. The other claims immediately follow sinceq ≤ n. 2

Theorem 28. Everyq-queue graphG with n vertices andm edges has a

2× 2×
(
n + (8 dlog2 qe+ 1)m

)
polyline drawing on a rectangular prism. There areO(log q) bends per edge, and the volume isO(n +
m log q), which is inO(n + m log n).

Proof: By Theorem 16,G has a4-track subdivisionD with at most8dlog2 qe + 1 division vertices
per edge. The number of vertices ofD is at mostn + (8dlog2 qe + 1)m. By Lemma 36,D has a
2 × 2 × (n + (8dlog2 qe + 1)m) straight-line drawing, which is the desired polyline drawing ofG. The
volume isO(n + m log n) sinceq ≤ n. 2

Since the queue-number of ann-vertex graph is at mostn we have the following corollary of Theo-
rem 28.

Corollary 3. Every graph withn vertices andm edges has a polyline drawing withO(n + m log n)
volume andO(log n) bends per edge. 2
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[43] ISTVÁN FÁRY. On straight line representation of planar graphs.Acta Univ. Szeged. Sect. Sci.
Math., 11:229–233, 1948.



198 Vida Dujmovíc and David R. Wood

[44] STEFAN FELSNER, GIUSSEPEL IOTTA , AND STEPHEN K. W ISMATH. Straight-line drawings on
restricted integer grids in two and three dimensions.J. Graph Algorithms Appl., 7(4):363–398,
2003.

[45] ZVI GALIL , RAVI KANNAN , AND ENDRE SZEMERÉDI. On3-pushdown graphs with large sepa-
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